Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing uncooled photodetectors at midwavelength infrared (MWIR) is critical for various applications including remote sensing, heat seeking, spectroscopy, and more. In this study, we demonstrate room-temperature operation of nanowire-based photodetectors at MWIR composed of vertical selective-area InAsSb nanowire photoabsorber arrays on large bandgap InP substrate with nanoscale plasmonic gratings. We accomplish this by significantly suppressing the nonradiative recombination at the InAsSb nanowire surfaces by introducing ex situ conformal AlO passivation shells. Transient simulations estimate an extremely low surface recombination velocity on the order of 10 cm/s. We further achieve room-temperature photoluminescence emission from InAsSb nanowires, spanning the entire MWIR regime from 3 to 5 μm. A dry-etching process is developed to expose only the top nanowire facets for metal contacts, with the sidewalls conformally covered by AlO shells, allowing for a higher internal quantum efficiency. Based on these techniques, we fabricate nanowire photodetectors with an optimized pitch and diameter and demonstrate room-temperature spectral response with MWIR detection signatures up to 3.4 μm. The results of this work indicate that uncooled focal plane arrays at MWIR on low-cost InP substrates can be designed with nanostructured absorbers for highly compact and fully integrated detection platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b04420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!