The human single-stranded DNA binding Protein 2 (SSBP2) is a tumor suppressor implicated in multiple cancer forms. The SSBP2 and related SSBP3/SSBP4 proteins are predicted to be intrinsically disordered excepted for their highly conserved N-terminal LUFS (LUG/LUH, Flo8, and SSBP/SSDP) domain. LUFS domains are found in a number of proteins including some transcriptional co-repressors. Although LUFS domains contain an N-terminal Lis homology (LisH) motif that typically forms a stable dimer, no 3D structure of any LUFS domain is available. Here, we report a crystal structure of the LUFS domain of human SSBP2 at 1.52 Å resolution. We show that the SSBP2 LUFS domain forms a homo-tetramer and reveal how an alpha-helix C-terminal to the LisH motif mediates SSBP2 tetramerization (dimerization of dimers). Conservation of the tetramerization interface among LUFS domains suggests that other LUFS domains may also form tetramers in similar manners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423716 | PMC |
http://dx.doi.org/10.1002/pro.3581 | DOI Listing |
Protein Sci
November 2019
Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia.
The LUFS domain (LUG/LUH, Flo8, single-strand DNA-binding protein [SSBP]) is a well-conserved and apparently ancient region found in diverse proteins and taxa. This domain, which has as its most obvious structural feature a series of three helices, has been identified in transcriptional regulator proteins of animals, plants, and fungi. Recently, in these pages (Wang et al.
View Article and Find Full Text PDFProtein Sci
April 2019
Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington, DC 98195.
The human single-stranded DNA binding Protein 2 (SSBP2) is a tumor suppressor implicated in multiple cancer forms. The SSBP2 and related SSBP3/SSBP4 proteins are predicted to be intrinsically disordered excepted for their highly conserved N-terminal LUFS (LUG/LUH, Flo8, and SSBP/SSDP) domain. LUFS domains are found in a number of proteins including some transcriptional co-repressors.
View Article and Find Full Text PDFGene
December 2018
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Members of the LEUNIG gene family have recently emerged as key players in gene repression, affecting several developmental mechanisms in plants, especially flower development. LEUNIG proteins function via recruiting adaptor SEUSS proteins. Nevertheless, no systematic studies on the LEUNIG and SEUSS gene families have been undertaken in tomato (Solanum lycopersicum, a fleshy fruit-bearing model plant, belonging to the Solanaceae family).
View Article and Find Full Text PDFPLoS Pathog
April 2016
Department of Molecular Microbiology and Genetics, Institute of Microbiology & Genetics, Georg-August-University Göttingen, Göttingen, Germany.
The transcription factor Flo8/Som1 controls filamentous growth in Saccharomyces cerevisiae and virulence in the plant pathogen Magnaporthe oryzae. Flo8/Som1 includes a characteristic N-terminal LUG/LUH-Flo8-single-stranded DNA binding (LUFS) domain and is activated by the cAMP dependent protein kinase A signaling pathway. Heterologous SomA from Aspergillus fumigatus rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploids and pseudohyphal growth in diploids, respectively.
View Article and Find Full Text PDFBMC Plant Biol
February 2014
Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
Background: During abiotic stress many genes that are important for growth and adaptation to stress are expressed at elevated levels. However, the mechanisms that keep the stress responsive genes from expressing under non stress conditions remain elusive. Recent genetic characterization of the co-repressor LEUNIG_HOMOLOG (LUH) and transcriptional adaptor proteins SEUSS-LIKE1 (SLK1) and SLK2 have been proposed to function redundantly in diverse developmental processes; however their function in the abiotic stress response is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!