Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde.

Bioconjug Chem

Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen, Copenhagen , DK-2100 , Denmark.

Published: March 2019

A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and survival of cancer cells. A hydroxylamine N-glycan modified FVIIai (FVIIai-ONH) was used for oxime coupling with the aldehyde [F]2 under mild and optimized conditions in an isolated RCY of 4.7 ± 0.9%, and a synthesis time of 267 ± 5 min (from EOB). Retained binding and specificity of the resulting [F]FVIIai to TF was shown in vitro. TF-expression imaging capability was evaluated by in vivo PET/CT imaging in a pancreatic human xenograft cancer mouse model. The conjugate showed exceptional stability in plasma (>95% at 4 h) and a binding fraction of 90%. In vivo PET/CT imaging showed a mean tumor uptake of 3.8 ± 0.2% ID/g at 4 h post-injection, a comparable uptake in liver and kidneys, and low uptake in normal tissues. In conclusion, FVIIai was labeled with fluorine-18 at the N-glycan chain without affecting TF binding. In vitro specificity and a good in vivo imaging contrast at 4 h postinjection was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.8b00900DOI Listing

Publication Analysis

Top Keywords

oxime coupling
8
active site
8
site inhibited
8
inhibited factor
8
vivo pet/ct
8
pet/ct imaging
8
coupling active
4
factor nonvolatile
4
nonvolatile water-soluble
4
water-soluble fluorine-18
4

Similar Publications

Chemodivergent dearomatization of benzene-linked O-oxime esters EnT-induced radical cross-coupling.

Chem Sci

January 2025

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT) Guangzhou 510640 China.

Radical-mediated dearomatization strategies offer a blueprint for building value-added and synthetically valuable three-dimensional skeletons from readily available aromatic starting materials. Herein, we report a novel strategy by leveraging benzene-linked O-oxime esters as triply functionalized precursors to form two distinct persistent radicals under a chemodivergent pathway. These radicals then couple with a cyclohexadienyl radical for either carboamination or carbo-aminoalkylation.

View Article and Find Full Text PDF

Glycosite-specific antibody-drug conjugates (gsADCs), which carry cytotoxic payloads at the conserved -glycosylation site, N297, of an IgG, have emerged as a promising ADC format with better therapeutic index. Conjugating the payloads aldehyde-based chemistry is more friendly to IgGs, and has been widely investigated. However, the efficiency of introducing an aldehyde tag at the N297 site is poor due to the complicated procedures required, such as the multiple-enzyme-catalyzed IgG glycoengineering process and the successive oxidation step, which always results in heterogeneous products and poor stability.

View Article and Find Full Text PDF

Photocatalytic Partial Water Oxidation Promoted by a Hydrogen Acceptor-Hydroxyl Mediator Couple.

Adv Sci (Weinh)

December 2024

Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China.

Hydrogen peroxide (HO) is an important chemical in synthetic chemistry with huge demands. Photocatalytic synthesis of HO via oxygen reduction and water oxidation reactions (ORR and WOR) is considered as a promising and desirable solution for on-site applications. However, the efficiency of such a process is low due to the poor solubility of molecular oxygen and the rapid reverse reaction of hydroxyl radicals (OH) with hydrogen atoms (H).

View Article and Find Full Text PDF

Ambient Synthesis of Cyclohexanone Oxime via In Situ Produced Hydrogen Peroxide over Cobalt-Based Electrocatalyst.

Adv Sci (Weinh)

December 2024

Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.

Cyclohexanone oxime, a critical precursor for nylon-6 production, is traditionally synthesized via the hydroxylamine method under industrial harsh conditions. Here is present a one-step electrochemical integrated approach for the efficient production of cyclohexanone oxime under ambient conditions. This approach employed the coupling of in situ electro-synthesized HO over a cobalt (Co)-based electrocatalyst with the titanium silicate-1 (TS-1) heterogeneous catalyst to achieve the cyclohexanone ammoximation process.

View Article and Find Full Text PDF

Highly Efficient Synthesis of α-Amino Acids via Electrocatalytic C-N Coupling Reaction Over an Atomically Dispersed Iron Loaded Defective TiO.

Adv Mater

December 2024

State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.

The synthesis of α-amino acids via the electrocatalytic C-N coupling attracted extensive attention owing to the mild reaction conditions, controllable reaction parameters, and atom economy. However, the α-amino acid yield remains unsatisfying. Herein, the efficient electrocatalytic synthesis of α-amino acids is achieved with an atomically dispersed Fe loaded defective TiO monolithic electrocatalyst (Fe-TiO/Ti).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!