Glutamate (Glu), a neurotransmitter in animal, is a novel signaling molecule in plants, which takes part in cellular metabolism, seed germination, plant growth, development, and long-distance information transfer. However, whether Glu can enhance the heat tolerance in maize seedlings and its relation to calcium signaling is still elusive. In this study, maize seedlings were pretreated with Glu and then exposed to heat stress. The results showed that Glu pretreatment enhanced the survival percentage of maize seedlings under heat tolerance, indicating that Glu could increase the heat tolerance of maize seedlings. The Glu-induced heat tolerance was weakened by exogenous calcium chloride, plasma membrane Ca channel blocker (LaCl), Ca chelator (ethylene glycol-bis(b-aminoethylether)-N,N, N΄,N΄-tetraacetic acid), calmodulin antagonists (trifluoperazine and chlopromazine), and plant glutamate receptor-like antagonists (MgCl and 6,7-dinitroquinoxaline- 2,3-(1H,4H)- dione). These findings for the first time reported that Glu could increase the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-019-01351-9DOI Listing

Publication Analysis

Top Keywords

heat tolerance
24
maize seedlings
24
tolerance maize
16
plant glutamate
12
glutamate receptor-like
12
calcium signaling
12
seedlings plant
8
receptor-like channels-mediated
8
channels-mediated calcium
8
glu increase
8

Similar Publications

Global warming is seriously threatening sheep farmings by increasing health problems and decreasing reproductive efficiency. In this study, pomegranate peels ethanolic extract (Ppee), rich in phenolic acids, was prepared in free (Fppee) and nanoemulsified (Nppee, with 18.49 nm-21.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!