Effects of Beclin 1 overexpression on aggressive phenotypes of colon cancer cells.

Oncol Lett

Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China.

Published: February 2019

Beclin 1 is involved in autophagy, differentiation, apoptosis and cancer progression, and functions as a haploinsufficient tumor suppressor gene. The aim of the present study was to elucidate the function of Beclin 1 in colon cancer. A Beclin 1-expressing plasmid was transfected into HCT-15 and HCT-116 cells, and the phenotypes and associated molecules were determined. Beclin 1 transfectants were subcutaneously injected into nude mice to determine tumor growth, and proliferation and apoptosis levels using Ki-67 immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), respectively. Beclin 1 overexpression inhibited viability as determined using a Cell Counting Kit-8 assay, inhibited migration and invasion as determined using a wound healing assay or Transwell assay, and lamellipodia formation by filamentous actin staining, induced autophagy as determined using electron microscopy, and light chain 3B (LC-3B) expression, and apoptosis as determined using Annexin V staining in the two cell lines (P<0.05). Beclin 1 induced G arrest of HCT-15 transfectants as determined using propidium iodide staining (P<0.05), whereas HCT-116 transfectants were arrested in G phase (P<0.05). The two transfectants exhibited increased expression of c-Myc, cyclin D1, β-catenin, insulin-response element 1 and 78 kDa glucose-regulated protein compared with the control and mock cells as determined using the reverse transcription-quantitative polymerase chain reaction (P<0.05). Beclin 1 overexpression upregulated LC-3B and cyclin-dependent kinase 4 expression, but downregulated cyclin E expression of the cancer cell lines as determined using western blot analysis (P<0.05). Beclin 1 expression significantly suppressed the proliferation of colon cancer cells in xenograft models via inducing apoptosis by TUNEL, and inhibiting proliferation by Ki-67 expression (P<0.05). Beclin 1 overexpression may reverse aggressive phenotypes and suppress colon cancer tumor growth, and be employed as a target molecule for gene therapy of patients with colon cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341844PMC
http://dx.doi.org/10.3892/ol.2018.9817DOI Listing

Publication Analysis

Top Keywords

beclin overexpression
8
colon cancer
8
beclin
5
determined
5
effects beclin
4
overexpression aggressive
4
aggressive phenotypes
4
phenotypes colon
4
cancer cells
4
cells beclin
4

Similar Publications

We investigated the protective effect of the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) on cardiomyocyte injury induced by HCN1 channel overexpression, and explored the underlying mechanisms. An HCN1 overexpression vector was constructed and transfected into H9C2 cells, followed by PDTC treatment. The experiments comprised the following groups: control, control + PDTC, overexpression negative control, HCN1 overexpression (HCN1-OE), and combined HCN1-OE + PDTC groups.

View Article and Find Full Text PDF

Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.

View Article and Find Full Text PDF

Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling.

View Article and Find Full Text PDF

Optimally designed PEGylatied arabinoxylan paclitaxel nano-micelles as alternative delivery for Abraxane®: A potential targeted therapy against breast and lung cancers.

Int J Biol Macromol

December 2024

Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt. Electronic address:

Paclitaxel (PTX) binds to spindle microtubules and inhibits mitotic division leading to cell death. However, its wide distribution, high absorption, and less selectively, minimize its application in cancer clinics. In this study, isolated arabinoxylans were used to encapsulate PTX, and then both were covered by polyethylene glycol conjugated to folic acid (FA), to strengthen its specificity to cancerous cells.

View Article and Find Full Text PDF

Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer.

Oncol Res

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!