Breast cancer progression is composed of multiple steps that are influenced by tumor cell adaptations to survive under acidic conditions in the tumor microenvironment. Regulation of this cell survival behavior is a promising strategy to avoid cancer development. Melatonin is a natural hormone produced and secreted by the pineal gland capable of modulating different biological pathways in cancer. Although the anti-cancer effects of melatonin are currently widespread, its role in the acid tumor microenvironment remains poorly understood. The aim of the present study was to investigate the effect of low pH (6.7) on human breast cancer cell lines MCF-7 and MDA-MB-231, and the effectiveness of melatonin in acute acidosis survival mechanisms. Cell viability was measured by a MTT assay and the protein expression of glucose transporter (GLUT)-1, Ki-67 and caspase-3 was evaluated by immunocytochemical (ICC) analysis following low pH media and melatonin treatment. In both cell lines the viability was decreased after melatonin treatment (1 mM) under acidosis conditions for 24 h. ICC analysis showed a significant increase in GLUT-1 and Ki-67 expression at pH 6.7, and a decrease after treatment with melatonin for 12 and 24 h. The low pH media decreased the expression of caspase-3, which was increased after melatonin treatment for 12 and 24 h. Overall, the results of the present study revealed melatonin treatment increases apoptosis, as indicated by changes in caspase-3, and decreases proliferation, indicated by changes to Ki-67, and GLUT-1 protein expression under acute acidosis conditions in breast cancer cell lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341749 | PMC |
http://dx.doi.org/10.3892/ol.2018.9758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!