A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of NOS1 regulating ABCG2 expression on proliferation and apoptosis of cervical cancer cells. | LitMetric

AI Article Synopsis

  • The study examined the levels of nitric oxide synthase 1 (NOS1) and ABCG2 in cervical cancer tissues compared to normal tissues, finding that both were significantly higher in cancer samples.
  • A positive correlation was found between the mRNA expression of NOS1 and ABCG2, indicating that changes in NOS1 may influence ABCG2 levels.
  • Manipulating NOS1 expression in cervical cancer cell lines led to decreased cell proliferation and increased apoptosis, suggesting that NOS1 plays a critical role in regulating cancer cell growth and could be a target for treatment.

Article Abstract

The expression of nitric oxide synthase 1 (NOS1) and adenosine triphosphate-binding cassette sub-family G member 2 (ABCG2) in cervical cancer tissues was investigated. The messenger ribonucleic acid (mRNA) levels of NOS1 and ABCG2 in 40 cervical cancer specimens and 20 normal cervical specimens were detected via reverse transcription-polymerase chain reaction, and the correlation between them was analyzed via Pearsons correlation analysis. The protein expression levels were detected via western blotting. Moreover, the regulatory mode between NOS1 and ABCG2 and the effects on proliferation and apoptosis of cervical cancer cells were analyzed using the lentiviral transfection technique. The mRNA levels of NOS1 and ABCG2 in the cervical cancer group were significantly increased compared with those in the normal cervical control group (P<0.05). There was a positive correlation between NOS1 and ABCG2 mRNA expression levels in cervical cancer tissues (r=1.246, P=0.014). HeLa and C-33A cell lines with relatively high expression levels of NOS1 and ABCG2 were selected for the study. After interference in the NOS1 expression in HeLa and C-33A cells with sh-NOS1, the protein expression of ABCG2 was also decreased. However, the protein expression level of NOS1 remained unchanged after interference in the ABCG2 expression (P<0.05). After interference in the NOS1 expression, the proliferation capacities of HeLa and C-33A cells were significantly decreased, but the apoptosis levels were obviously increased (P<0.05). The mRNA expression of NOS1 and ABCG2 in cervical cancer tissues is significantly increased. NOS1, as an upstream signal regulator of ABCG2, regulates the growth and apoptosis of tumor cells. Both NOS1 and ABCG2 are important proliferation-promoting oncogenes in cervical cancer, which are expected to provide a certain theoretical basis for the treatment of cervical cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341600PMC
http://dx.doi.org/10.3892/ol.2018.9786DOI Listing

Publication Analysis

Top Keywords

cervical cancer
20
abcg2 cervical
12
nos1 abcg2
12
proliferation apoptosis
8
apoptosis cervical
8
cancer cells
8
mrna levels
8
levels nos1
8
normal cervical
8
cervical
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!