Seeded polymerisation of proteins forming amyloid fibres and their spread in tissues has been implicated in the pathogenesis of multiple neurodegenerative diseases: so called "prion-like" mechanisms. While ex vivo mammalian prions, composed of multichain assemblies of misfolded host-encoded prion protein (PrP), act as lethal infectious agents, PrP amyloid fibrils produced in vitro generally do not. The high-resolution structure of authentic infectious prions and the structural basis of prion strain diversity remain unknown. Here we use cryo-electron microscopy and atomic force microscopy to examine the structure of highly infectious PrP rods isolated from mouse brain in comparison to non-infectious recombinant PrP fibrils generated in vitro. Non-infectious recombinant PrP fibrils are 10 nm wide single fibres, with a double helical repeating substructure displaying small variations in adhesive force interactions across their width. In contrast, infectious PrP rods are 20 nm wide and contain two fibres, each with a double helical repeating substructure, separated by a central gap of 8-10 nm in width. This gap contains an irregularly structured material whose adhesive force properties are strikingly different to that of the fibres, suggestive of a distinct composition. The structure of the infectious PrP rods, which cause lethal neurodegeneration, readily differentiates them from all other protein assemblies so far characterised in other neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344479PMC
http://dx.doi.org/10.1038/s41598-018-36700-wDOI Listing

Publication Analysis

Top Keywords

infectious prp
12
prp rods
12
vivo mammalian
8
mammalian prions
8
generated vitro
8
neurodegenerative diseases
8
non-infectious recombinant
8
recombinant prp
8
prp fibrils
8
fibres double
8

Similar Publications

Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases.

Proc Natl Acad Sci U S A

January 2025

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.

Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.

View Article and Find Full Text PDF

Excitatory neuron-prone prion propagation and excitatory neuronal loss in prion-infected mice.

Front Mol Neurosci

December 2024

Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.

The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.

View Article and Find Full Text PDF

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.

View Article and Find Full Text PDF

Limbic system synaptic dysfunctions associated with prion disease onset.

Acta Neuropathol Commun

December 2024

Laboratory of Neurological Infections and Immunity, National Institute of Allergy and Infectious Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA.

Misfolding of normal prion protein (PrP) to pathological isoforms (prions) causes prion diseases (PrDs) with clinical manifestations including cognitive decline and mood-related behavioral changes. Cognition and mood are linked to the neurophysiology of the limbic system. Little is known about how the disease affects the synaptic activity in brain parts associated with this system.

View Article and Find Full Text PDF

First Report of Polymorphisms and Genetic Characteristics of Protein Gene () in Cats.

Animals (Basel)

November 2024

Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan 54531, Republic of Korea.

Prion diseases are fatal neurodegenerative disorders caused by the misfolding of the normal cellular prion protein (PrP) into its infectious isoform (PrP). Although prion diseases in humans, sheep, goats, and cattle have been extensively studied, feline spongiform encephalopathy (FSE) remains poorly understood. Genetic factors, particularly polymorphisms in the prion protein gene () and protein gene (), have been linked to prion disease susceptibility in various species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!