Past studies of the end-Permian extinction (EPE), the largest biotic crisis of the Phanerozoic, have not resolved the timing of events in southern high-latitudes. Here we use palynology coupled with high-precision CA-ID-TIMS dating of euhedral zircons from continental sequences of the Sydney Basin, Australia, to show that the collapse of the austral Permian Glossopteris flora occurred prior to 252.3 Ma (~370 kyrs before the main marine extinction). Weathering proxies indicate that floristic changes occurred during a brief climate perturbation in a regional alluvial landscape that otherwise experienced insubstantial change in fluvial style, insignificant reorganization of the depositional surface, and no abrupt aridification. Palaeoclimate modelling suggests a moderate shift to warmer summer temperatures and amplified seasonality in temperature across the EPE, and warmer and wetter conditions for all seasons into the Early Triassic. The terrestrial EPE and a succeeding peak in Ni concentration in the Sydney Basin correlate, respectively, to the onset of the primary extrusive and intrusive phases of the Siberian Traps Large Igneous Province.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344581 | PMC |
http://dx.doi.org/10.1038/s41467-018-07934-z | DOI Listing |
Curr Biol
January 2025
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
Dinosaurs dominated Mesozoic terrestrial ecosystems for ∼160 million years, but their biogeographic origin remains poorly understood. The earliest unequivocal dinosaur fossils appear in the Carnian (∼230 Ma) of southern South America and Africa, leading most authors to propose southwestern Gondwana as the likely center of origin. However, the high taxonomic and morphological diversity of these earliest assemblages suggests a more ancient evolutionary history that is currently unsampled.
View Article and Find Full Text PDFSci Rep
January 2025
Grant Institute, School of Geosciences, University of Edinburgh, James Hutton Road, Edinburgh, EH9 3FE, UK.
Glendonites (from the precursor of ikaite, CaCO.6HO) preferentially precipitate within sediments in cold waters (- 2 to 7°C) via either organotrophic or methanogenic sulphate reduction. Here, we report the first occurrence of possible glendonites associated with the end Permian mass extinction in the earliest Triassic (ca.
View Article and Find Full Text PDFAnat Rec (Hoboken)
February 2025
Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Centre de Recherche en Paléontologie - Paris (CR2P, UMR 7207), Paris, France.
In the context of an increasing interest for Pseudosuchia, we have compiled a Special Issue, comprising 14 collaborative studies that deepen our understanding of pseudosuchian evolution. These contributions range from the description of a new taxon to exhaustive reviews of thermometabolism, morphological adaptation, systematics, and detailed investigations into ontogeny, paleoneurology, paleohistology, and paleobiology. Through these papers, we explore the evolutionary history of pseudosuchian archosaurs, spotlighting their rise and diversification following the end-Permian mass extinction.
View Article and Find Full Text PDFSwiss J Palaeontol
September 2024
Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland.
In the wake of the greatest mass extinction in Earth's history, the End-Permian Mass Extinction, the Triassic was a time of recovery and innovation. Aided by warm climatic conditions and favorable ecological circumstances, many reptilian clades originated and rapidly diversified during this time. This set the stage for numerous independent invasions of the marine realm by several reptilian clades, such as Ichthyosauriformes and Sauropterygia, shaping the oceanic ecosystems for the entire Mesozoic.
View Article and Find Full Text PDFScience
September 2024
School of Geographical Sciences, University of Bristol, Bristol BS81SS, UK.
The ultimate driver of the end-Permian mass extinction is a topic of much debate. Here, we used a multiproxy and paleoclimate modeling approach to establish a unifying theory elucidating the heightened susceptibility of the Pangean world to the prolonged and intensified El Niño events leading to an extinction state. As atmospheric partial pressure of carbon dioxide doubled from about 410 to about 860 ppm (parts per million) in the latest Permian, the meridional overturning circulation collapsed, the Hadley cell contracted, and El Niños intensified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!