Focal oncogene amplification and rearrangements drive tumor growth and evolution in multiple cancer types. We present AmpliconArchitect (AA), a tool to reconstruct the fine structure of focally amplified regions using whole genome sequencing (WGS) and validate it extensively on multiple simulated and real datasets, across a wide range of coverage and copy numbers. Analysis of AA-reconstructed amplicons in a pan-cancer dataset reveals many novel properties of copy number amplifications in cancer. These findings support a model in which focal amplifications arise due to the formation and replication of extrachromosomal DNA. Applying AA to 68 viral-mediated cancer samples, we identify a large fraction of amplicons with specific structural signatures suggestive of hybrid, human-viral extrachromosomal DNA. AA reconstruction, integrated with metaphase fluorescence in situ hybridization (FISH) and PacBio sequencing on the cell-line UPCI:SCC090 confirm the extrachromosomal origin and fine structure of a Forkhead box E1 (FOXE1)-containing hybrid amplicon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344493 | PMC |
http://dx.doi.org/10.1038/s41467-018-08200-y | DOI Listing |
AME Case Rep
December 2024
Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China.
Background: Gastric cancer (GC) is one of the leading contributors to global malignancies incidence and mortality worldwide. Advanced GC had a relatively poor prognosis. The emerging of targeted therapy improved the survival and prognosis of GC patients.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Changhui Rd. 666, Zhenjiang, Jiangsu 212003, China.
Early diagnosis of tumors allows effective treatment of primary cancers through localized therapeutic interventions. However, developing diagnostic tools for sensitive, simple, and early tumor (especially less than 2 mm in diameter) detection remains a challenge. Herein, we presented a biomarker-activatable nanoprobe that enabled a near-infrared (NIR) photothermally amplified signal for fluorescence imaging and urinalysis of tumor.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:
Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.
A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to its ultra-thin hollow layer.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
The College of Health Humanities, Jinzhou Medical University, Jinzhou 121001, China.
Introduction: Polymerase Chain Reaction (PCR) has been a pivotal scientific technique since the twentieth century, and it is widely applied across various domains. Despite its ubiquity, challenges persist in efficiently amplifying specific DNA templates.
Method: While PCR experimental procedures have garnered significant attention, the analysis of the DNA template, which is the experiment's focal point, has been notably overlooked.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!