AI Article Synopsis

  • The study explores how microarchitectural cues and calcium signaling influence collagen deposition in living tissues and biomaterial scaffolds.
  • Researchers focused on human mesenchymal stem cells (MSCs) and found that the TRPV4 ion channel is essential for calcium oscillations during collagen matrix assembly.
  • Inhibiting TRPV4 disrupted collagen assembly, while activating it promoted alignment, indicating that TRPV4 is vital for the mechanical forces necessary for proper collagen organization.

Article Abstract

Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369759PMC
http://dx.doi.org/10.1073/pnas.1811095116DOI Listing

Publication Analysis

Top Keywords

aligned collagen
20
collagen matrix
16
matrix assembly
16
collagen
9
calcium signaling
8
mesenchymal stem
8
stem cells
8
microarchitectural cues
8
fibrillar collagen
8
trpv4 activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!