Enterovirus D68 (EV-D68) is a viral pathogen that leads to severe respiratory illness and has been linked with the development of acute flaccid myelitis (AFM) in children. No vaccines or antivirals are currently available for EV-D68 infection, and treatment options for hospitalized patients are limited to supportive care. Here, we report the expression of the EV-D68 2A protease (2A) and characterization of its enzymatic activity. Furthermore, we discovered that telaprevir, an FDA-approved drug used for the treatment of hepatitis C virus (HCV) infections, is a potent antiviral against EV-D68 by targeting the 2A enzyme. Using a fluorescence resonance energy transfer-based substrate cleavage assay, we showed that the purified EV-D68 2A has proteolytic activity selective against a peptide sequence corresponding to the viral VP1-2A polyprotein junction. Telaprevir inhibits EV-D68 2A through a nearly irreversible, biphasic binding mechanism. In cell culture, telaprevir showed submicromolar-to-low-micromolar potency against several recently circulating neurotropic strains of EV-D68 in different human cell lines. To further confirm the antiviral drug target, serial viral passage experiments were performed to select for resistance against telaprevir. An N84T mutation near the active site of 2A was identified in resistant viruses, and this mutation reduced the potency of telaprevir in both the enzymatic and cellular antiviral assays. Collectively, we report for the first time the enzymatic activity of EV-D68 2A and the identification of telaprevir as a potent EV-D68 2A inhibitor. These findings implicate EV-D68 2A as an antiviral drug target and highlight the repurposing potential of telaprevir to treat EV-D68 infection. A 2014 EV-D68 outbreak in the United States has been linked to the development of acute flaccid myelitis in children. Unfortunately, no treatment options against EV-D68 are currently available, and the development of effective therapeutics is urgently needed. Here, we characterize and validate a new EV-D68 drug target, the 2A, and identify telaprevir-an FDA-approved drug used to treat hepatitis C virus (HCV) infections-as a potent antiviral with a novel mechanism of action toward 2A 2A functions as a viral protease that cleaves a peptide sequence corresponding to the VP1-2A polyprotein junction. The binding of telaprevir potently inhibits its enzymatic activity, and using drug resistance selection, we show that the potent antiviral activity of telaprevir was due to 2A inhibition. This is the first inhibitor to selectively target the 2A from EV-D68 and can be used as a starting point for the development of therapeutics with selective activity against EV-D68.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6430540 | PMC |
http://dx.doi.org/10.1128/JVI.02221-18 | DOI Listing |
Parasit Vectors
January 2025
Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia.
Background: Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses in Colombia. Various insecticides, including pyrethroid, organophosphate, and carbamate insecticides; growth regulators; and biological insecticides, such as Bacillus thuringiensis var. israelensis, have been used to control Ae.
View Article and Find Full Text PDFBMC Microbiol
January 2025
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.
View Article and Find Full Text PDFClin Exp Med
January 2025
Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
Purpose: STING (stimulator of interferon genes) is involved in viral and bacterial defense through interferon pathway and innate immunity. Increased susceptibility to infection is a common manifestation of multiple myeloma (MM). Thus, we aimed to explore the clinical significance and possible mechanism of STING in MM.
View Article and Find Full Text PDFNat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China.
MicroRNA (miRNA) dysregulation has been identified in several carcinomas, including non-small cell lung cancer (NSCLC), and is known to play a role in the development and progression of this disease. We initially conducted a miRNA microarray analysis, which revealed that the MNK inhibitor CGP57380 increased the expression of miR-150-3p. A similar analysis was performed using data from The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!