Background: Early diagnosis of skin cancer lesions by dermoscopy, the gold standard in dermatological imaging, calls for a diagnostic upscale. The aim of the study was to improve the accuracy of dermoscopic skin cancer diagnosis through use of novel deep learning (DL) algorithms. An additional sonification-derived diagnostic layer was added to the visual classification to increase sensitivity.

Methods: Two parallel studies were conducted: a laboratory retrospective study (LABS, n = 482 biopsies) and a non-interventional prospective observational study (OBS, n = 63 biopsies). A training data set of biopsy-verified reports, normal and cancerous skin lesions (n = 3954), were used to develop a DL classifier exploring visual features (System A). The outputs of the classifier were sonified, i.e. data conversion into sound (System B). Derived sound files were analyzed by a second machine learning classifier, either as raw audio (LABS, OBS) or following conversion into spectrograms (LABS) and by image analysis and human heuristics (OBS). The OBS criteria outcomes were System A specificity and System B sensitivity as raw sounds, spectrogram areas or heuristics.

Findings: LABS employed dermoscopies, half benign half malignant, and compared the accuracy of Systems A and B. System A algorithm resulted in a ROC AUC of 0.976 (95% CI, 0.965-0.987). Secondary machine learning analysis of raw sound, FFT and Spectrogram ROC curves resulted in AUC's of 0.931 (95% CI 0.881-0.981), 0.90 (95% CI 0.838-0.963) and 0.988 (CI 95% 0.973-1.001), respectively. OBS analysis of raw sound dermoscopies by the secondary machine learning resulted in a ROC AUC of 0.819 (95% CI, 0.7956 to 0.8406). OBS image analysis of AUC for spectrograms displayed a ROC AUC of 0.808 (CI 95% 0.6945 To 0.9208). By applying a heuristic analysis of Systems A and B a sensitivity of 86% and specificity of 91% were derived in the clinical study.

Interpretation: Adding a second stage of processing, which includes a deep learning algorithm of sonification and heuristic inspection with machine learning, significantly improves diagnostic accuracy. A combined two-stage system is expected to assist clinical decisions and de-escalate the current trend of over-diagnosis of skin cancer lesions as pathological. FUND: Bostel Technologies. Trial Registration clinicaltrials.gov Identifier: NCT03362138.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413349PMC
http://dx.doi.org/10.1016/j.ebiom.2019.01.028DOI Listing

Publication Analysis

Top Keywords

machine learning
16
deep learning
12
skin cancer
12
roc auc
12
learning algorithms
8
prospective observational
8
cancer lesions
8
image analysis
8
secondary machine
8
analysis raw
8

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a chronic and progressive lung disease. Disulfidptosis-related genes (DRGs) may be involved in the pathogenesis of COPD. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of disulfidptosis in the development of COPD could provide a opportunity for primary prediction, targeted prevention, and personalized treatment of the disease.

View Article and Find Full Text PDF

Background: In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifying crucial health behaviours within mother-child pairs.

Methods: For the analysis, we utilized a representative sample of 724 mothers with children under six years in Bangladesh.

View Article and Find Full Text PDF

Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

View Article and Find Full Text PDF

Background: Early diagnosis of syphilis is vital for its effective control. This study aimed to develop an Artificial Intelligence (AI) diagnostic model based on radiomics technology to distinguish early syphilis from other clinical skin lesions.

Methods: The study collected 260 images of skin lesions caused by various skin infections, including 115 syphilis and 145 other infection types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!