Purpose: A recent meta-analysis revealed PAX6 as a risk gene for myopia. There is a link between PAX6 and HOXA9. Furthermore, HOXA9 has been reported to activate TGF-β that is a risk factor for myopia. We speculate HOXA9 may participate in myopia development.
Methods: The Singapore GUSTO birth cohort provides data on children's cycloplegic refraction measured at age of 3 years and their methylation profile based on the umbilical cord DNA. The HOXA9 expression levels were measured in the eyes of mono-ocular form deprivation myopia in mice. The plasmid with the mouse HOXA9 cDNA was constructed and then transfected to mouse primary retinal pigment epithelial (RPE) cells. The expression levels of myopia-related genes and cell proliferation were measured in the HOXA9-overexpressed RPE cells.
Results: A total of 519 children had data on methylation profile and cycloplegic refraction. The mean spherical equivalent refraction (SE) was 0.90D. Among 8 SE outliers (worse than -2D), 7 children had HOXA9 hypomethylation. The HOXA9 levels in the retina of myopic eyes was 2.65-fold (p = 0.029; paired t-test) higher than the uncovered fellow eyes. When HOXA9 was over-expressed in the RPE cells, TGF-β, MMP2, FGF2 and IGF1R expression levels were dose-dependently increased by HOXA9. However, over-expression of HOXA9 had no significant influence on IGF1 or HGF expression. In addition, HOXA9 also increased RPE proliferation.
Conclusion: Based on the human, animal and cellular data, the transcription factor HOXA9 may promote the expression of pro-myopia genes and RPE proliferation, which eventually contribute to myopia development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343304 | PMC |
http://dx.doi.org/10.1186/s12886-019-1038-9 | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Gynecological Preclinical Oncology, Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy.
Mucinous epithelial ovarian cancer (mEOC) is a rare subtype of epithelial ovarian cancer, characterized by poor responses to standard platinum-based chemotherapy. Polo-like kinase 1 (PLK1) is a key regulator of mitosis and cell cycle progression and its inhibition has been recently identified as a target in mEOC. In this study, we aimed to identify further therapeutic targets in mEOC using a CRISPR/Cas9 library targeting 3015 genes, with and without treatment with onvansertib, a PLK1 inhibitor.
View Article and Find Full Text PDFInt J Lab Hematol
January 2025
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Introduction: NUP98 rearrangements are rare in acute leukemias and portend a poor prognosis.
Methods: This study explored clinicopathologic and molecular features of five patients with NUP98 rearranged (NUP98-r) acute leukemias, including three females and two males with a median age of 34 years.
Results: NUP98 fusion partners were associated with distinctive leukemia characteristics and biology.
Front Oncol
January 2025
Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .
Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.
Nat Commun
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!