Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amphiphilic aminoglycosides have attracted interest due to their novel antifungal activities. A crucial but often neglected factor for drug development in academia is cost of production. Herein is reported a one-step, inexpensive synthesis of amphiphilic alkyl kanamycins constituted with only natural components. The synthetic methodology also enabled the preparation of a series fluorescent amphiphilic aryl kanamycins for direct structure-activity mode of action studies. The lead compounds showed prominent antifungal activities against a panel of fungi, including Fusarium graminearum, Cryptococcus neoformans, and several Candida sp., and also significant antibacterial activities. With fluorescence-based whole cell assays, the aryl amphiphilic kanamycins were observed to permeabilize fungal surface membranes at faster rates than bacterial surface membranes. Also, the antifungal action of the amphiphilic kanamycins was observed to occur in a biphasic mode with an initial fast phase correlated with rapid membrane permeabilization at subminimal inhibitory concentrations and a slower phase membrane permeabilization that elevates the reactive oxygen species production leading to cell death. Inactive hydrophobic amphiphilic kanamycins displayed no membrane permeabilization. The results offer cost-effective methods for producing amphiphilic kanamycins and reveal insights into how nonfungal specific amphiphilic kanamycins can be employed for fungal specific diagnostic and therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.8b00327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!