Dynamics of a stoichiometric producer-grazer system with seasonal effects on light level.

Math Biosci Eng

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA.

Published: December 2018

Many population systems are subject to seasonally varying environments. As a result, many species exhibit seasonal changes in their life-history parameters. It is quite natural to try to understand how seasonal forcing affects population dynamics subject to stoichiometric constraints, such as nutrient/light availability and food quality. Here, we use a variation of a stoichiometric Lotka-Volterra type model, known as the LKE model, as a case study, focusing on seasonal variation in the producer's light-dependent carrying capacity. Positivity and boundedness of model solutions are studied, as well as numerical explorations and bifurcations analyses. In the absence of seasonal effects, the LKE model suggests that the dynamics are either stable equilibrium or limit cycles. However, through bifurcation analysis we observe that seasonal forcing can lead to complicated population dynamics, including periodic and quasi-periodic solutions.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019023DOI Listing

Publication Analysis

Top Keywords

seasonal effects
8
seasonal forcing
8
population dynamics
8
lke model
8
seasonal
6
dynamics
4
dynamics stoichiometric
4
stoichiometric producer-grazer
4
producer-grazer system
4
system seasonal
4

Similar Publications

Background: Hemorrhagic fever with renal syndrome (HFRS) is a climate-sensitive zoonotic disease that poses a significant public health burden worldwide. While previous studies have established associations between meteorological factors and HFRS incidence, there remains a critical knowledge gap regarding the heterogeneity of these effects across diverse epidemic regions. Addressing this gap is essential for developing region-specific prevention and control strategies.

View Article and Find Full Text PDF

Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.

View Article and Find Full Text PDF

Environmental influence and species occurrence of yellowjacket drones in an invaded area.

Sci Rep

January 2025

Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (CONICET - INTA), Modesta Victoria N°4450, San Carlos de Bariloche, Río Negro, 8400, Argentina.

During the mating season, reproductive individuals of numerous insect species gather in rendezvous areas, which increases mating opportunities. Male hymenopterans often have to move considerable distances during a particular season, searching or waiting for receptive females. Such behavior is likely driven by a complex combination of individual and species-specific traits, environmental influence, and landscape cues.

View Article and Find Full Text PDF

Well-designed effective interventions promoting sustainable diets are urgently needed to benefit both human and planetary health. This study evaluated the feasibility, acceptability, and potential impact of a pilot blended digital intervention aimed at promoting sustainable diets. We conducted a series of ABA n-of-1 trials with baseline, intervention, and follow-up phases over the course of a year, involving twelve participants.

View Article and Find Full Text PDF

Shifting community assembly dynamics are an underappreciated mechanism by which warming will alter plant community composition. Germination timing (which can determine the order in which seedlings emerge within a community) will likely shift unevenly across species in response to warming. In seasonal environments where communities reassemble at the beginning of each growing season, changes in germination timing could lead to changes in seasonal priority effects, and ultimately community composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!