Aging-associated defects in hematopoietic stem cells (HSCs) can manifest in their progeny, leading to aberrant activation of the NLRP3 inflammasome in macrophages and affecting distant tissues and organismal health span. Whether the NLRP3 inflammasome is aberrantly activated in HSCs during physiological aging is unknown. We show here that SIRT2, a cytosolic NAD-dependent deacetylase, is required for HSC maintenance and regenerative capacity at an old age by repressing the activation of the NLRP3 inflammasome in HSCs cell autonomously. With age, reduced SIRT2 expression and increased mitochondrial stress lead to aberrant activation of the NLRP3 inflammasome in HSCs. SIRT2 overexpression, NLRP3 inactivation, or caspase 1 inactivation improves the maintenance and regenerative capacity of aged HSCs. These results suggest that mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome is a reversible driver of the functional decline of HSC aging and highlight the importance of inflammatory signaling in regulating HSC aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371804 | PMC |
http://dx.doi.org/10.1016/j.celrep.2018.12.101 | DOI Listing |
Brain Behav
January 2025
Department of Anesthesiology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Background: The occurrence and development of postoperative cognitive dysfunction (POCD) are closely linked to neuroinflammation. This bibliometric analysis aims to provide novel insights into the research trajectory, key research topics, and potential future development trends in the field of neuroinflammation-induced POCD.
Methods: The Web of Science Core Collection (WoSCC) database was searched to identify publications from 2012 to 2023 on neuroinflammation-induced POCD.
BMC Complement Med Ther
January 2025
Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.
Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.
Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).
Background: Our laboratory has demonstrated that the NLRP3 inflammasome has a critical role in the microglial innate immune response to Alzheimer's disease (AD)-related peptides, triggering the release of cleaved-caspase-1 and IL-1β. NLRP3 activation was found in post-mortem tissue from individuals with AD (Heneka et al., 2013) and in transgenic models of AD (APP/PS1 mice).
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Clinical Laboratory, Norinco General Hospital, Xi'an, Shaanxi, China.
Background: Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently.
Aims: The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD.
Materials & Methods: The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively.
Background: Neuroinflammation is a critical factor of Alzheimer's Disease (AD). Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury. This is likely of particular relevance in the brain where inflammation is poorly tolerated and brain cells are vulnerable to direct damage by complement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!