Resistance to chemistries of the succinate dehydrogenase inhibiting (SDHI) and quinone outside inhibiting (QoI) fungicides has developed rapidly in populations of Alternaria solani, the cause of early blight of potato. Reduced sensitivity to the anilinopyrimidine (AP) fungicide pyrimethanil has also been identified recently, determining that resistance to three chemical classes of fungicides is present within the A. solani population. Although no mutations have been characterized to confer resistance to APs, in A. solani five point mutations on three AsSdh genes have been determined to convey resistance to SDHIs, and the substitution of phenylalanine with leucine at position 129 (F129L) in the cytb gene confers resistance to QoIs. The objective of this study was to investigate the parasitic fitness of A. solani isolates with resistance to one or more of these chemical classes. A total of 120 A. solani isolates collected from various geographical locations around the United States were chosen for in vitro assessment, and 60 of these isolates were further evaluated in vivo. Fitness parameters measured were (i) spore germination in vitro, (ii) mycelial expansion in vitro, and (iii) aggressiveness in vivo. No significant differences in spore germination or mycelial expansion (P = 0.44 and 0.51, respectively) were observed among wild-type and fungicide-resistant isolates in vitro. Only A. solani isolates possessing the D123E mutation were shown to be significantly more aggressive in vivo (P < 0.0001) compared with wild-type isolates. These results indicate that fungicide-resistant A. solani isolates have no significant fitness penalties compared with sensitive isolates under the parameters evaluated regardless of the presence or absence of reduced sensitivity to multiple chemical classes. Results of these studies suggest that A. solani isolates with multiple fungicide resistances may compete successfully with wild-type isolates under field conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-08-17-1268-REDOI Listing

Publication Analysis

Top Keywords

solani isolates
20
chemical classes
12
isolates
11
solani
9
parasitic fitness
8
alternaria solani
8
reduced sensitivity
8
spore germination
8
mycelial expansion
8
wild-type isolates
8

Similar Publications

[Investigation of the Antifungal Susceptibility and Virulence Factors of Fusarium Strains Isolated from Clinical Samples].

Mikrobiyol Bul

January 2025

Aydın Adnan Menderes Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Aydın.

Fusarium türleri, insanlarda keratit ve onikomikoz başta olmak üzere invaziv veya invaziv olmayan çeşitli enfeksiyonlarda etken olan küf mantarlarıdır. Taksonomide Fusarium cinsi, tür kompleks [species complex (SC)]'lere ayrılmış, SC'ler de türlere ayrılmıştır. SC/tür düzeyinde identifikasyonun, morfolojik özelliklere göre yapılmasının güçlüğü nedeniyle moleküler yöntemlerin kullanımı önerilmektedir.

View Article and Find Full Text PDF

Occurrence of AG-5 Causing Root Rot on in Northwestern China.

Plant Dis

January 2025

Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;

Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.

View Article and Find Full Text PDF

This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .

View Article and Find Full Text PDF

Seed microbiomes promote Astragalus mongholicus seed germination through pathogen suppression and cellulose degradation.

Microbiome

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.

Background: Seed-associated microorganisms play crucial roles in maintaining plant health by providing nutrients and resistance to biotic and abiotic stresses. However, their functions in seed germination and disease resistance remain poorly understood. In this study, we investigated the microbial community assembly features and functional profiles of the spermosphere and endosphere microbiomes related to germinated and ungerminated seeds of Astragalus mongholicus by using amplicon and shotgun metagenome sequencing techniques.

View Article and Find Full Text PDF

From 2016 to 2019, 128 organic and conventional spring and winter pea fields in Germany were surveyed to determine the effects of cropping history and pedo-climatic conditions on pea root health, the diversity of Fusarium and Didymella communities and their collective effect on pea yield. Roots generally appeared healthy or showed minor disease symptoms despite the frequent occurrence of 4 Didymella and 14 Fusarium species. Soil pH interacted with the occurrence of the Fusarium oxysporum species complex (FOSC) and F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!