Genotypic and Phenotypic Variations in Botrytis spp. Isolates from Single Strawberry Flowers.

Plant Dis

Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634.

Published: January 2018

Gray mold, caused by Botrytis spp., is among the most devastating diseases affecting strawberry worldwide. The great diversity present in the pathogen enhances its ability to survive and adapt in the field. In this study, we explored the genotypic and phenotypic diversity present in single strawberry flowers. In total, 192 isolates were collected from 19 flowers and four farms, and 9 to 12 isolates were collected from each flower. Forty-two haplotypes were found using microsatellite fragment analysis. Multiple haplotypes of two different Botrytis spp. (Botrytis cinerea and B. fragariae) were found in 12 flowers. In the remaining seven flowers, the single-spore isolates examined were of identical haplotypes. In three flowers, the two Botrytis spp. were found to coexist. Isolates were either sensitive (zero chemical class resistance) or resistant to one, two, three, four, or five chemical classes of fungicides. Resistance to multiple fungicides was commonly observed in both species but resistance to boscalid and penthiopyrad was only found in B. cinerea isolates. Resistance to cyprodinil was found in B. fragariae for the first time in the United States. Each haplotype was generally linked to a single resistance profile; however, a single resistance profile often was represented by multiple haplotypes. Isolates from the same flower of multiple haplotypes were largely identical in resistance profiles. This study is a first detailed investigation of genotypic diversity combined with phenotypic analysis of Botrytis spp. at the single-tissue level. It demonstrates that high genotypic and phenotypic diversity is present not only within fields but also in individual blossoms as well. This information is important for understanding the epidemiology of Botrytis and also has implications for fungicide resistance management, particularly related to resistance monitoring practices.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-06-17-0891-REDOI Listing

Publication Analysis

Top Keywords

botrytis spp
20
genotypic phenotypic
12
multiple haplotypes
12
resistance
9
single strawberry
8
strawberry flowers
8
phenotypic diversity
8
isolates collected
8
single resistance
8
resistance profile
8

Similar Publications

Isolated from Grapevine Is a Mycoparasite of .

J Fungi (Basel)

January 2025

Food and Wine Research Institute, Eszterházy Károly Catholic University, Leányka utca 8/G, H-3300 Eger, Hungary.

The best known spp. are important pathogens of small-grain cereals and/or endophytes of diverse monocot hosts. This study is the first report of isolated from asymptomatic grapevine tissues.

View Article and Find Full Text PDF

Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: , , spp.

View Article and Find Full Text PDF

Incidence, Distribution, and Pathogenicity of Fungi Growing on Sugar Beet Roots on Top of Outdoor Piles in Idaho.

Plant Dis

January 2025

USDA ARS, Northwest Irrigation and Soils Research Laboratory, 3793 North 3600 East, Kimberly, Idaho, United States, 83341;

Sugar beet roots in Idaho are held under ambient conditions in outdoor storage piles which can lead to fungal growth and rot and substantial sucrose loss. Thus the incidence, distribution, and pathogenicity of fungi associated with fungal growth on the surface of sugar beet roots on top of outdoor piles was investigated. The surface fungal growth on sugar beet roots held on top of 14 Idaho outdoor piles [tarped ventilated (TV) piles and piles with no tarps or ventilation (NTV) at 7 locations] was assessed in 2018-19 and 2019-20.

View Article and Find Full Text PDF

Whole genome analysis of Stenotrophomonas geniculata MK2 and antagonism against Botrytis cinerea in strawberry.

Int Microbiol

November 2024

Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia.

Article Synopsis
  • - A newly identified bacterial strain, Stenotrophomonas geniculata MK2, effectively controls gray mold on strawberries, demonstrating 85% inhibition of the pathogen Botrytis cinerea in lab tests and 88% efficacy on detached fruits.
  • - Whole genome sequencing revealed MK2 has a circular chromosome with a size of 736,465 bp, featuring a high coding ratio and numerous genes primarily involved in metabolic processes and general functions.
  • - The strain produces various secondary metabolites linked to biocontrol properties, showing potential for use as a natural agent against postharvest diseases in strawberries.
View Article and Find Full Text PDF

The hex1 gene of Trichoderma simmonsii is involved in stress responses, biocontrol potential and wheat plant growth.

Microbiol Res

January 2025

Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain. Electronic address:

Woronin bodies are unique organelles in Pezizomycotina fungi that allow hyphae compartmentalization and prevent cytoplasmatic bleeding after mechanical injury. Several studies have related the peroxisomal protein HEX1, the major component of Woronin bodies with other biological processes such as hyphal growth, osmotic stress tolerance and pathogenicity. Trichoderma spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!