Objective: by using a 3D printer, to create a low-cost human chest cavity simulator that allows the reproduction of the closed chest drainage technique (CCD), comparing its effectiveness with that of the animal model.

Methods: it was made a 3D printing of the bony framework of a human thorax from a chest computerized tomography scan. After printing the ribs, we performed tests with several materials that contributed to form the simulation of the thoracic cavity and pleura. An experimental, randomized, and controlled study, comparing the efficacy of the simulator to the efficacy of the animal model, was then carried out in the teaching of CCD technique for medical students, who were divided into two groups: animal model group and simulator model group, that trained CCD technique in animals and in the simulator model, respectively.

Results: the chest reconstruction required anatomical knowledge for tomography analysis and for faithful 3D surface editing. There was no significant difference in the safety of performing the procedure in both groups (7.61 vs. 7.73; p=0.398). A higher score was observed in the simulator model group for "use as didactic material" and "learning of the chest drainage technique", when compared to the animal model group (p<0.05).

Conclusion: the final cost for producing the model was lower than that of a commercial simulator, what demonstrates the feasibility of using 3D printing for this purpose. In addition, the developed simulator was shown to be equivalent to the animal model in relation to the simulation of the drainage technique for practical learning, and there was preference for the simulator model as didactic material.

Download full-text PDF

Source
http://dx.doi.org/10.1590/0100-6991e-20192011DOI Listing

Publication Analysis

Top Keywords

model group
16
animal model
12
simulator model
12
medical students
8
chest drainage
8
ccd technique
8
model
7
chest
6
simulator
6
chest tube
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!