Four cobalt(iii) complexes of the general formula [Co(Schiff base)(L)2]+, where L is ammonia (NH3) or 3-fluorobenzylamine (3F-BnNH2), were synthesized. The complexes were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Their electrochemical properties, ligand substitution mechanisms, and ligand exchange rates in aqueous buffer were investigated. These physical properties were correlated to the cellular uptake and anticancer activities of the complexes. The complexes undergo sequential, dissociative ligand substitution, with the exchange rates depending heavily on the axial ligands. Eyring analyses revealed that the relative ligand exchange rates were largely impacted by differences in the entropy, rather than enthalpy, of activation for the complexes. Performing the substitution reactions in the presence of ascorbate led to a change in the reaction profile and kinetics, but no change in the final product. The cytotoxic activity of the complexes correlates with both the ligand exchange rate and reduction potential, with the more easily reduced and rapidly substituted complexes showing higher toxicity. These relationships may be valuable for the rational design of Co(iii) complexes as anticancer or antiviral prodrugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6504617 | PMC |
http://dx.doi.org/10.1039/c8dt04606a | DOI Listing |
Inorg Chem
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
ConspectusThe advancement of synthetic methodologies is fundamentally driven by a deeper understanding of the structure-reactivity relationships of reactive key intermediates. Carbyne anions are compounds featuring a monovalent anionic carbon possessing four nonbonding valence electrons, which were historically confined to theoretical constructs or observed solely within the environment of gas-phase studies. These species possess potential for applications across diverse domains of synthetic chemistry and ancillary fields.
View Article and Find Full Text PDFACS Catal
January 2025
Chemical Biotechnology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, the Netherlands.
Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Laboratory of Organic Solids, Zhongguancun, 100190, Beijing, CHINA.
Conjugated coordination polymers (c-CPs), a novel class of organic-inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Currently, c-CPs incorporating selenium-substituted ligands remain scarce.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
In this work, we show two synthetic routes to substitute the N position of mesoionic imines (MIIs). By Buchwald-Hartwig amination, 5-amino-1,2,3-triazoles can be arylated at the said position, showing the versatility of amino-triazoles as building blocks for MIIs. The reaction of MIIs with electrophiles (MeI, fluoro-arenes) highlights the nucleophilic nature of MIIs as even at room temperature aromatic C-F bonds can be activated with MIIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!