Herein, we newly design a ternary structure of 1-dimensional hollow g-C3N4 nanofibers (HGCNF) decorated with molybdenum disulfide (MoS2) and sulfur/nitrogen-doped graphene (SNG) via a one-pot hydrothermal treatment at relatively low temperature. The firstly presented HGCNF are fabricated using electrospinning followed by the thermal sintering method. After that, MoS2 is grown onto HGCNF, while SNG covered the structures during the hydrothermal method. We observed the morphological structures, chemical composition and optical absorbance of this ternary HGCNF/SNG/MoS2 structure. Of the as-prepared catalysts, HGCNF/SNG/MoS2 exhibited a good possibility to produce hydrogen as an electrocatalyst. Furthermore, we evaluated its stability performance using chronoamperometry for 48 hours, as well as by 3000 cycles of cyclic voltammetry. From the double-layer capacitance measurement, HGCNF/SNG/MoS2 proved itself as an electrocatalyst due to the higher value of electrocatalytically active sites to be 6.97 × 10-3 F cm-2 than that of only HGCNF (0.18 × 10-5 F cm-2) and the binary structure of HGCNF/MoS2 (2.54 × 10-3 F cm-2). We believe that our novel 1-dimensional ternary HGCNF/SNG/MoS2 structure has expedited the electron pathways by reducing the resistance at interfaces among HGCNF, SNG and MoS2, to be potentially useful for the hydrogen evolution reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt04656eDOI Listing

Publication Analysis

Top Keywords

hgcnf sng
8
ternary hgcnf/sng/mos2
8
hgcnf/sng/mos2 structure
8
10-3 cm-2
8
hgcnf
5
novel design
4
design hollow
4
hollow g-cn
4
g-cn nanofibers
4
nanofibers decorated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!