The Mitotic Exit Network integrates temporal and spatial signals by distributing regulation across multiple components.

Elife

David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.

Published: January 2019

GTPase signal transduction pathways control cellular decision making by integrating multiple cellular events into a single signal. The Mitotic Exit Network (MEN), a Ras-like GTPase signaling pathway, integrates spatial and temporal cues to ensure that cytokinesis only occurs after the genome has partitioned between mother and daughter cells during anaphase. Here we show that signal integration does not occur at a single step of the pathway. Rather, sequential components of the pathway are controlled in series by different signals. The spatial signal, nuclear position, regulates the MEN GTPase Tem1. The temporal signal, commencement of anaphase, is mediated by mitotic cyclin-dependent kinase (CDK) phosphorylation of the GTPase's downstream kinases. We propose that integrating multiple signals through sequential steps in the GTPase pathway represents a generalizable principle in GTPase signaling and explains why intracellular signal transmission is a multi-step process. Serial signal integration rather than signal amplification makes multi-step signal transduction necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6363386PMC
http://dx.doi.org/10.7554/eLife.41139DOI Listing

Publication Analysis

Top Keywords

signal
9
mitotic exit
8
exit network
8
signal transduction
8
integrating multiple
8
gtpase signaling
8
signal integration
8
gtpase
5
network integrates
4
integrates temporal
4

Similar Publications

Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!