Twelve surface-active ionic liquids (SAILs) and surface-active derivatives, based on imidazolium, ammonium, and phosphonium cations and containing one, or more, long alkyl chains in the cation and/or the anion, were synthetized and characterized. The aggregation behavior of these SAILs in water, as well as their adsorption at solution/air interface, were studied by assessing surface tension and conductivity. The CMC values obtained (0.03-6.0 mM) show a high propensity of these compounds to self-aggregate in aqueous media. Their thermal properties were also characterized, namely the melting point and decomposition temperature by using DSC and TGA, respectively. Furthermore, the toxicity of these SAILs was evaluated using the marine bacteria Aliivibrio fischeri (Gram-negative). According to the EC values obtained (0.3-2.7 mg L ), the surface-active compounds tested should be considered "toxic" or "highly toxic". Their ability to induce cell disruption of Escherichia coli cells (also Gram-negative), releasing the intracellular green fluorescent protein (GFP) produced, was investigated. The results clearly evidence the capability of these SAILs to act as cell disruption agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201801127DOI Listing

Publication Analysis

Top Keywords

surface-active ionic
8
ionic liquids
8
disruption escherichia
8
escherichia coli
8
coli cells
8
cell disruption
8
synthesis characterization
4
surface-active
4
characterization surface-active
4
liquids disruption
4

Similar Publications

Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery.

AAPS PharmSciTech

January 2025

Consulting, Fort Collins, Colorado, USA.

Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.

View Article and Find Full Text PDF

In the present study, the mixed micellization behavior of gemini surfactant-1, 5-bis (N-hexadecyl- N, N-dimethylammonium) pentane dibromide (G5) with non-ionic surfactant triton X-100 (TX-100) was investigated in the micellar phase by utilizing the conductometric technique. The deviation of ideal critical micelle concentration (cmc*) from experimental critical micelle concentration (cmc) has been estimated using well-known Clint's theory of mixed micelles. The regular solution approximation was used to determine the interaction parameter (β) and found to be negative.

View Article and Find Full Text PDF

The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!