Insulator-based dielectrophoresis combined with the isomotive AC electric field and applied to single cell analysis.

Electrophoresis

Department of Applied Physics, National Defense Academy, Kanagawa, Japan.

Published: May 2019

AI Article Synopsis

Article Abstract

We developed an insulator-based dielectrophoretic (iDEP) creek-gap device that enables the isomotive movement of cells and that is suitable for determining their DEP properties. In the iDEP creek-gap device, a pair of planar insulators forming a single fan-shaped channel allows the induction of the isomotive iDEP force on cells. Hence, the cells' behavior is characterized by straight motion at constant velocity in the longitudinal direction of the channel. Operation of the device was demonstrated using human breast epithelial cells (MCF10A) by applying an AC voltage of V = 34 V peak-to-peak and frequencies of 200 kHz and 50 MHz to the device. Subsequently, the magnitude of DEP forces and the real part of the ClausiusMossotti (CM) factor, Re(β), were deduced from the measured cell velocity. The values of Re(β) were 0.14 ± 0.01 for the frequency of 200 kHz and -0.12 ± 0.01 for 50 MHz. These results demonstrated that the DEP properties of the cells could be extracted over a wide field frequency range. Therefore, the proposed iDEP creek-gap device was found to be applicable to cell analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201800380DOI Listing

Publication Analysis

Top Keywords

idep creek-gap
12
creek-gap device
12
cell analysis
8
dep properties
8
device
5
insulator-based dielectrophoresis
4
dielectrophoresis combined
4
combined isomotive
4
isomotive electric
4
electric field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!