Background: The mutation of TANK-binding kinase 1 (TBK1) gene has been regarded as a causative gene of frontotemporal dementia (FTD)-amyotrophic lateral sclerosis (ALS) spectrum disease in recent years. So far, more than 70 TBK1 variants have been identified in patients with FTD-ALS spectrum.

Methods: We reported a Chinese FTD patient carrying TBK1 p.Ile334Thr variant detected by target sequencing and Sanger sequencing. The patient's clinical materials were collected. The transcription and translation levels of TBK1 mutant were investigated in fibroblast by qPCR and western blot. The effects of TBK1 mutant in inflammation pathway and autophagy were detected by luciferase reporter assay and GST pull-down assay.

Results: The patient was diagnosed as behavioral variant FTD (bvFTD) and displayed progressively severe cognitive impairment especially in executive function. A pattern of frontotemporal atrophy and hypometabolism was shown through MRI and PET-CT. In vitro functional experiments of TBK1 p.Ile334Thr variant demonstrated reduced transcription and translation levels, decreased kinase activity but maintenance of interaction with optineurin. The variant was classified as likely pathogenic according to American College of Medical Genetics and Genomics guideline.

Conclusion: We proposed the TBK1 mutation p.Ile334Thr as a likely pathogenic variant in bvFTD which also expanded the clinical spectrum of this variant. It can partially abrogate TBK1 functions and be responsible for FTD-ALS spectrum diseases through neuroinflammatory pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418353PMC
http://dx.doi.org/10.1002/mgg3.547DOI Listing

Publication Analysis

Top Keywords

tbk1 mutation
8
mutation pile334thr
8
frontotemporal dementia
8
tbk1 pile334thr
8
pile334thr variant
8
transcription translation
8
translation levels
8
tbk1 mutant
8
tbk1
7
variant
6

Similar Publications

Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1).

View Article and Find Full Text PDF
Article Synopsis
  • Endometrial cancer is a serious gynecological issue, and the study focused on the role of TBK1, a kinase involved in inflammation and immunity, in this cancer type.
  • Research found that low TBK1 expression is linked to better patient outcomes, and inhibiting TBK1 with amlexanox reduced cancer cell growth and migration.
  • The effects of amlexanox were shown to work through the AKT/NF-κB signaling pathway, suggesting a new direction for cancer treatments targeting TBK1 in endometrial cancer.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. More than fifty genes carrying causative or disease-modifying variants have been identified since the 1990s, when the first ALS-associated variant in the gene SOD1 was discovered. The most commonly mutated ALS genes in the European populations include the C9orf72, SOD1, TARDBP and FUS.

View Article and Find Full Text PDF
Article Synopsis
  • Macroautophagy involves creating structures called autophagosomes for cellular cleanup, and disrupting their closure has unknown effects.
  • Researchers created mice with a specific mutation that impairs autophagosome closure, resulting in various issues like protein buildup and growth problems, though some survive into adulthood.
  • The study found that this mutation causes the buildup of a protein (TBK1) on forming autophagosomes, leading to increased phosphorylation and aggregation of other proteins, suggesting a new role for these structures in managing cellular waste.
View Article and Find Full Text PDF

Targeting ATAD3A Phosphorylation Mediated by TBK1 Ameliorates Senescence-Associated Pathologies.

Adv Sci (Weinh)

January 2025

Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Targeting cellular senescence, one of the hallmarks of aging and aging-related pathologies emerges as an effective strategy for anti-aging and cancer chemotherapy. Here, a switch from TBK1-OPTN axis to TBK1-ATAD3A axis to promote cellular senescence is shown. Mechanically, TBK1 protein is abnormally activated and localized to the mitochondria during senescence, which directly phosphorylates ATAD3A at Ser321.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!