Background: Increased levels of cyclooxygenase (COX) derived oxylipins is the earliest and most consistent alteration in the renal oxylipin profile in diverse models of cystic kidney diseases. Therefore, we examined whether a COX2 inhibitor would reduce disease progression in the Pkd2 mouse model of autosomal dominant polycystic kidney disease (ADPKD).

Methods: Weanling normal and diseased male Pkd2 mice were provided diets that provided 0 or 50 mg celecoxib/kg body weight/day, for 13 weeks. Renal disease and function were assessed by histomorphometric analysis of renal cysts and measurement of serum creatinine and urea nitrogen (SUN) levels. Targeted lipidomic analysis of renal oxylipins was performed by HPLC-MS/MS.

Results: Diseased mice had significant cyst involvement and reduced renal function as indicated by elevated serum creatinine and SUN. Celecoxib reduced cyst area by 48%, cyst volume by 70%, and serum creatinine and SUN by 20% and 16%, respectively. Consistent with our previous studies, 8 of the 11 COX derived oxylipins were higher in diseased kidneys. In addition, 24 of 33 lipoxygenase (LOX) derived oxylipins and 7 of 16 cytochrome P450 (CYP) derived oxylipins were lower in diseased kidneys. Celecoxib reduced total and five of the eight individual elevated COX oxylipins and increased 5 of 24 LOX and 5 of 7 CYP oxylipins that were reduced by disease.

Conclusions: COX2 inhibition ameliorates disease progression, improves renal function and improves the altered oxylipins in Pkd2 mice. This represents a potential new approach for treatment of ADPKD, a disorder for which no effective treatment currently exists.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40620-018-00578-8DOI Listing

Publication Analysis

Top Keywords

derived oxylipins
16
disease progression
12
serum creatinine
12
progression improves
8
improves altered
8
pkd2 mouse
8
mouse model
8
model autosomal
8
autosomal dominant
8
dominant polycystic
8

Similar Publications

Acute myocardial infarction (AMI) causes ischemic damage and cardiac remodeling that ultimately progresses into ischemic cardiomyopathy (ICM). Coronary revascularization reduces morbidity and mortality from an MI, however, reperfusion also induces oxidative stress that drives cardiac myocyte (CM) dysfunction and ICM. Oxidative stress in CMs leads to reactive oxygen species (ROS) production and mitochondrial damage.

View Article and Find Full Text PDF

Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin.

Cell Mol Biol Lett

January 2025

Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.

The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.

View Article and Find Full Text PDF

Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit.

View Article and Find Full Text PDF

Background: Strawberry (Fragaria × annanasa Duch.) is an important economic fruit worldwide, whose growth and development are often hindered by water deficiency. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, has been suggested to mitigate the osmotic damages by promoting root water absorption, osmotic adjustment, photosynthetic capacity, and antioxidant improvement.

View Article and Find Full Text PDF

Epibiotic bacterial community composition varies during different developmental stages of Octopus mimus: Study of cultivable representatives and their secondary metabolite production.

PLoS One

January 2025

Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.

Marine microbial communities colonizing the skin of invertebrates constitute the primary barrier between host and environment, potentially exerting beneficial, neutral, or detrimental effects on host fitness. To evaluate the potential contribution of epibiotic bacteria to the survival of early developmental stages of Octopus mimus, bacterial isolates were obtained from eggs, paralarvae, and adults. Their enzymatic activities were determined, and antibacterial properties were assessed against common marine pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!