Regulation of α-Klotho Expression by Dietary Phosphate During Growth Periods.

Calcif Tissue Int

Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.

Published: June 2019

Inorganic phosphate (Pi) is an essential nutrient for maintaining various biological functions, particularly during growth periods. Excess intake of dietary Pi increases the secretion of fibroblast growth factor 23 (FGF23) and parathyroid hormone to maintain plasma Pi levels. FGF23 is a potent phosphaturic factor that binds to the α-klotho/FGFR complex in the kidney to promote excretion of Pi into the urine. In addition, excess intake of dietary Pi decreases renal α-klotho expression. Down-regulation or lack of α-klotho induces a premature aging-like phenotype, resulting from hyperphosphatemia, and leading to conditions such as ectopic calcification and osteoporosis. However, it remains unclear what effects dietary Pi has on α-klotho expression at different life stages, especially during growth periods. To investigate this, we used C57BL/6J mice in two life stages during growing period. Weaned (3 weeks old) and periadolescent (7 weeks old) were randomly divided into seven experimental groups and fed with 0.02, 0.3, 0.6, 0.9, 1.2, 1.5, or 1.8% Pi diets for 7 days. As a result, elevated plasma Pi and FGF23 levels and decreased renal α-klotho expression were observed in weaned mice fed with a high Pi diet. In addition, a high Pi diet clearly induced renal calcification in the weaned mice. However, in the periadolescent group, renal calcification was not observed, even in the 1.8% Pi diet group. The present study indicates that a high Pi diet in weaned mice has much greater adverse effects on renal α-klotho expression and pathogenesis of renal calcification compared with periadolescent mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-019-00525-0DOI Listing

Publication Analysis

Top Keywords

α-klotho expression
20
growth periods
12
renal α-klotho
12
weaned mice
12
high diet
12
renal calcification
12
excess intake
8
intake dietary
8
life stages
8
renal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!