For calculated initial antifungal therapy, knowledge on parallel and cross-resistances are vitally important particularly in the case of multiresistant isolates. Based on a strain collection of 1,062 yeast isolates from a German/Austrian multicentre study, susceptibility pattern analysis (SPA) was used to determine the proportion of parallel and cross-resistances to eight antifungal agents (AFAs) encompassing flucytosine, amphotericin B, azoles (fluconazole, voriconazole and posaconazole) and echinocandins (caspofungin, micafungin and anidulafungin). A total of 414 (39.0%) isolates were resistant for one or more of the AFAs. Resistance to one AFA was shown for 18.1% of all isolates. For 222 isolates (20.9%), resistance to two to seven AFAs was noted (7.7%; 7.7%; 3.6%; 1.0%; 0.7% and 0.2% to 2, 3, 4, 5, 6 and 7 antifungal compounds, respectively). Partial parallel resistances within the azole and echinocandin classes, respectively, were found for 81 (7.6%) and 70 (6.6%) isolates. Complete parallel resistances for azoles, echinocandins and combined for both classes were exhibited by 93 (8.8%), 18 (1.7%) and 6 (0.6%) isolates, respectively. Isolates displaying cross-resistances between azoles and echinocandins were infrequently found. Highly resistant isolates (resistance to ≥6 AFAs) were almost exclusively represented by . Highly standardized testing of AFAs in parallel and from the same inocula followed by SPA allows detailed insights in the prevalence and distribution of susceptibility patterns of microbial isolates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301743 | PMC |
http://dx.doi.org/10.3205/id000020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!