Volatile organic compounds (VOC) produced by microorganisms in response to chemical stressor showed recently increasing attention, because of possible environmental applications. In this work, we aimed to bring the first proof of concept that volatolomic (i.e., VOCs analysis) can be used to determine candidate VOC markers of two soil bacteria strains ( SG-1 and Mes11) exposure to pesticides. VOC determination was based on solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Accordingly, we highlighted a set of bacterial VOCs modulated in each strains according to the nature of the pesticide used. Three out these VOCs were specifically modulated in SG-1 when exposed with two pyrethroid pesticides (deltamethrine and cypermethrine): 2-hexanone; 1,3-ditertbutylbenzene and malonic acid, hexyl 3-methylbutyl ester. Our results thus suggest the possible existence of generic VOC markers of pyrethroids in this strain. Of particular interest, two out of these three VOCs, the 1,3-ditertbutylbenzene and the malonic acid, hexyl 3-methylbutyl ester were found also in Mes11 when exposed with cypermethrine. This result highlighted the possible existence of interspecific VOC markers of pyrethroid in these two bacteria. Altogether, our work underlined the relevance of volatolomic to detect signatures of pesticides exposure in microorganisms and more generally to microbial ecotoxicology. Based on these first results, considerations of volatolomics for the chemical risk assessment in environment such as soils can be indirectly explored in longer terms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332697 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.03113 | DOI Listing |
Fungal Biol
February 2025
Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus, Denmark. Electronic address:
Although a major share of postharvest losses of apples is due to fungal fruit rots, their timely detection is difficult in commercial bulk-storage rooms. Therefore, a method was developed to identify the volatile markers of fruit naturally infected by Phacidiopycnis washingtonensis, a common storage-rot fungus of Northern Europe, and North and South America. Potato dextrose agar, apple juice agar, and fruit of the apple cultivar 'Nicoter' were inoculated with P.
View Article and Find Full Text PDFMycopathologia
January 2025
Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
The clinical diagnosis of dermatophytosis and identification of dermatophytes face challenges due to reliance on culture-based methods. Rapid, cost-effective detection techniques for volatile organic compounds (VOCs) have been developed for other microorganisms, but their application to dermatophytes is limited. This study explores using VOCs as diagnostic markers for dermatophytes.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
Coronavirus Disease 2019 causes significant morbidity, and different variants of concern (VOCs) can impact organ systems differently. We conducted a single-center retrospective cohort analysis comparing biomarkers and clinical outcomes in hospitalized patients infected with the wild-type or Alpha (wt/Alpha) VOC against patients infected with the Omicron VOC. We included 428 patients infected with the wt/Alpha VOC and 117 patients infected with the Omicron VOC.
View Article and Find Full Text PDFJ Food Sci
December 2024
Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agri-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
(E)-2-Hexenal (E2H) is an important volatile organic compound (VOC) that can serve as a marker for fruit quality sensing and shelf-life evaluation. However, visual and portable sensors for E2H have not been reported mainly because of the difficulty in selective response to E2H while avoiding interference from other VOC, especially isomers. Herein, we developed a novel colorimetric sensor based on thiol-functionalized polydiacetylene assembly (PDA-SH/PDA) for the quantitative and selectivity of E2H.
View Article and Find Full Text PDFFront Oncol
November 2024
Division of Neurodegenerative Disorders, Saint Boniface Hospital Albrechtsen Research Center, Winnipeg, MB, Canada.
Early detection of cancer typically facilitates improved patient outcomes; however, many cancers are not easily diagnosed at an early stage. One potential route for developing new, non-invasive methods of cancer detection is by testing for cancer-related volatile organic compounds (VOCs) biomarkers in patients' urine. In this review, 44 studies covering the use and/or identification of cancer-related VOCs were examined, including studies which examined multiple types of cancer simultaneously, as well as diverse study designs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!