Chlorpyrifos is one of the most widely used pesticides that acts on the nervous system by inhibiting acetylcholinesterase. Prolonged use of chlorpyrifos causes severe neurological, autoimmune, and persistent developmental disorders in humans. Therefore, in this study, a highly sensitive and robust biosensor platform was devised by fabricating graphene field effect transistors (graFET) on Si/SiO substrate for the detection of chlorpyrifos in real samples. Anti-chlorpyrifos antibodies were immobilized successfully on the graphene surface. Under optimal conditions, graFET sensor showed an excellent response for chlorpyrifos detection in the linear range of 1 fM to 1 µM with a limit of detection up to 1.8 fM in spiked samples. The developed graFET biosensor is highly stable, sensitive, and specific for chlorpyrifos as confirmed by its significant ability to detect changes in electrostatic potential. These findings signify useful efficacy of immunobiosensors for the detection of chlorpyrifos and other organophosphates in fruits and vegetables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343030PMC
http://dx.doi.org/10.1038/s41598-018-36746-wDOI Listing

Publication Analysis

Top Keywords

detection chlorpyrifos
12
graphene field
8
chlorpyrifos
7
detection
5
microfluidic-based graphene
4
field transistor
4
transistor femtomolar
4
femtomolar detection
4
chlorpyrifos chlorpyrifos
4
chlorpyrifos pesticides
4

Similar Publications

The Danjiangkou Reservoir is the largest artificial freshwater lake in Asia. This study investigated the spatiotemporal distribution of pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Danjiangkou Reservoir to assess the ecological and human health risks associated with these pollutants. Twenty-three sampling sites in the Danjiangkou Reservoir each collected 23 surface water samples and 23 sediment samples.

View Article and Find Full Text PDF

This paper explores the use of large core declad optical fibers coated with molecularly imprinted polymers for chlorpyrifos detection, a key marker of organophosphate pesticides. The performance of sensor is evaluated using artificial neural networks and principal component analysis. By varying the declad length, the performance of molecularly imprinted polymer-coated fibers is compared to uncoated fibers, and both are used to identify commercial and pure samples of chlorpyrifos pesticides.

View Article and Find Full Text PDF

Target-assisted self-powered photoelectrochemical sensor based on AgS/BiOCl heterojunction for ultrasensitive chlorpyrifos detection.

Talanta

December 2024

College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China. Electronic address:

Chlorpyrifos (CPF), a widely used organophosphorus pesticide, presents substantial risks to both environmental and human health due to its persistent accumulation, thereby necessitating the development of effective detection methods. Self-powered photoelectrochemical (PEC) sensors, as an innovative technology, address the limitations inherent in conventional sensors, such as susceptibility to interference and inadequate signal response. Herein, we synthesized AgS/BiOCl as a photosensitive material, employing it as a light-harvesting substrate and a signal-transducing platform to develop a self-powered PEC sensor for the detection of CPF.

View Article and Find Full Text PDF

A sensitive and efficient fluorescent sensor based on a magnetic manganese-doped zinc sulfide molecularly imprinted probe (FeO/Mn-ZnS/MIP) was successfully developed for the detection of chlorpyrifos (CPF). The probe combined the advantages of magnetic separation, the fluorescence properties of Mn-ZnS, and the exceptional molecule recognition capabilities of molecularly imprinted polymers. The developed sensor exhibits selective binding to CPF, resulting in a quenching of fluorescence intensity of FeO/Mn-ZnS/MIP by a photo-induced electron transfer mechanism.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!