Fluorescent theranostics probes at the second near-IR region (NIR-II; 1.0-1.7 µm) are in high demand for precise theranostics that minimize autofluorescence, reduce photon scattering, and improve the penetration depth. Herein, we designed and synthesized an NIR-II theranostic nanoprobe 1 that incorporates a Pt(II) metallacycle 2 and an organic molecular dye 3 into DSPE-mPEG5000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine--[methoxy(polyethylene glycol)-5000]). This design endows 1 with good photostability and passive targeting ability. Our studies show that 1 accurately diagnoses cancer with high resolution and selectively delivers the Pt(II) metallacycle to tumor regions via an enhanced permeability and retention effect. In vivo studies reveal that 1 efficiently inhibits the growth of tumor with minimal side effects. At the same time, improved fluorescent imaging quality and signal-to-noise ratios are shown due to the long emission wavelengths. These studies demonstrate that 1 is a potential theranostic platform for tumor diagnosis and treatment in the NIR-II region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369813 | PMC |
http://dx.doi.org/10.1073/pnas.1817021116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!