Histone Deacetylase HDA-2 Modulates Multiple Responses in Arabidopsis.

Plant Physiol

División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la presa San José No. 2055, Colonia Lomas 4a sección. C.P. 78216, San Luis Potosí, Mexico

Published: April 2019

spp. are a rich source of secondary metabolites and volatile organic compounds (VOCs), which may induce plant defenses and modulate plant growth. In filamentous fungi, chromatin modifications regulate secondary metabolism. In this study we investigated how the absence of histone deacetylase HDA-2 in the strain Δ impacts its effect on a host, Arabidopsis (). The production of VOCs and their impact on plant growth and development were assessed as well. The Δ strain was impaired in its ability to colonize Arabidopsis roots, thus affecting the promotion of plant growth and modulation of plant defenses against foliar pathogens and , which normally result from interaction with Furthermore, Δ VOCs were incapable of triggering plant defenses to counterattack foliar pathogens. The Δ overproduced the VOC 6-pentyl-2H-pyran-2-one (6-PP), which resulted in enhanced root branching and differentially regulated phytohormone-related genes. Analysis of ten VOCs (including 6-PP) revealed that three of them positively regulated plant growth, whereas six had the opposite effect. Assessment of secondary metabolites, detoxification, and communication with plant-related genes showed a dual role for HDA-2 in gene expression regulation during its interaction with plants. Chromatin immunoprecipitation of acetylated histone H3 on the promoters of plant-responsive genes in Δ showed, in the presence of Arabidopsis, low levels of and compared with that in the wild type; whereas presented high constitutive levels, supporting a dual role of HDA-2 in gene regulation. This work highlights the importance of HDA-2 as a global regulator in to modulate multiple responses in Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446751PMC
http://dx.doi.org/10.1104/pp.18.01092DOI Listing

Publication Analysis

Top Keywords

plant growth
16
plant defenses
12
histone deacetylase
8
deacetylase hda-2
8
multiple responses
8
responses arabidopsis
8
secondary metabolites
8
foliar pathogens
8
dual role
8
role hda-2
8

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!