Anti-washout underwater concrete (AWC) is widely used in nondrainage strengthening; however, there still exist some problems with it, such as high strength loss and poor interfacial bond in practical engineering application. Based on the study of self-stressed concrete (SSC), a research on the mix ratio for the C30 self-stressed anti-washout underwater concrete (SSAWC) was carried out in this paper in hope of solving the above problems, specifically, by adding an expansive agent to the AWC. The parameters, such as strength, fluidity, anti-dispersity, and expansibility, were picked as target indices in determination of the mix ratio. The orthogonal test design and range analysis were used to determine the reasonable mix ratio and study the influence of various parameters on the performance of SSAWC. The experimental program conducted includes a series of strength, fluidity, anti-dispersity, and expansibility tests on 18 groups of specimens. The results show that C30 SSAWC has an excellent performance using the optimal mix ratio. Compared with AWC, the expansibility and self-stress of the SSAWC can be easily observed, and the compressive strength ratio of the SSAWC casted in water to that casted in air is much bigger. This implies that SSAWC is applicable to the nondrainage strengthening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356312 | PMC |
http://dx.doi.org/10.3390/ma12020324 | DOI Listing |
Materials (Basel)
January 2025
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.
In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.
The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Gansu Yuanlong Road and Bridge Mechanized Highway Engineering Co., Ltd., Lanzhou 730070, China.
In recent years, research on self-compacting concrete (SCC) has gradually shifted towards high-strength development, while high-strength self-compacting concrete has been widely used in applications such as precast bridge components and high-rise building projects. Using manufactured sand as an aggregate can effectively address the challenges posed by the depletion of natural sand resources. This study optimized the mix design for high-strength self-compacting concrete with manufactured sand (MSH-SCC) and explored the effects of the fine aggregate replacement rate, sand ratio, and maximum particle size of coarse aggregate on the performance of MSH-SCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!