Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents the design, fabrication, and characterization of a novel fiber optic ultrasonic sensing system based on the photoacoustic (PA) ultrasound generation principle and Fabry-Perot interferometer principle for high temperature monitoring applications. The velocity of a sound wave traveling in a medium is proportional to the medium's temperature. The fiber optic ultrasonic sensing system was applied to measure the change of the velocity of sound. A fiber optic ultrasonic generator and a Fabry-Perot fiber sensor were used as the signal generator and receiver, respectively. A carbon black-polydimethylsiloxane (PDMS) material was utilized as the photoacoustic material for the fiber optic ultrasonic generator. Two tests were performed. The system verification test proves the ultrasound sensing capability. The high temperature test validates the high temperature measurement capability. The sensing system survived 700 °C. It successfully detects the ultrasonic signal and got the temperature measurements. The test results agreed with the reference sensor data. Two potential industry applications of fiber optic ultrasonic sensing system are, it could serve as an acoustic pyrometer for temperature field monitoring in an industrial combustion facility, and it could be used for exhaust gas temperature monitoring for a turbine engine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358833 | PMC |
http://dx.doi.org/10.3390/s19020404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!