Understanding the role of substituents is of great importance for the preparation of novel phenolic compounds with enhanced antioxidative properties. In this work, the antioxidative activity of isoflavonoid derivatives with different substituents placed at the C2 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) related to hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were calculated. The strongest antioxidative group of isoflavonoid is not altered by the substituents. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Equations obtained from linear regression can be useful in the selection of suitable candidates for the synthesis of novel isoflavonoids derivatives with enhanced antioxidative properties. In the gas and benzene phases, the electron-donating substituents would enhance the antioxidative activity of isoflavonoids via weakening the BDE of 4'-OH. In water phase, they will reduce the antioxidative by strengthening the PA of 7-OH. Contrary results occur for the electron-withdrawing groups. In addition, the electronic effects of substituents on the BDE/IP/PA have also been analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359201PMC
http://dx.doi.org/10.3390/ijms20020397DOI Listing

Publication Analysis

Top Keywords

activity isoflavonoid
8
enhanced antioxidative
8
antioxidative properties
8
antioxidative activity
8
antioxidative
6
substituents
5
substituent effects
4
effects radical
4
radical scavenging
4
scavenging activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!