Six-month-old infants can store representations of multiple objects in working memory but do not always remember the objects' features (e.g., shape). Here, we asked whether infants' object representations (a) may contain conceptual content and (b) may contain this content even if perceptual features are forgotten. We hid two conceptually distinct objects (a humanlike doll and a nonhuman ball) one at a time in two separate locations and then tested infants' memory for the first-hidden object by revealing either the original hidden object or an unexpected other object. Using looking time, we found that infants remembered the categorical identity of the hidden object but failed to remember its perceptual identity. Our results suggest that young infants may encode conceptual category in a representation of an occluded object, even when perceptual features are lost.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0956797618817754DOI Listing

Publication Analysis

Top Keywords

object representations
8
working memory
8
perceptual features
8
hidden object
8
object
7
conceptually rich
4
rich perceptually
4
perceptually sparse
4
sparse object
4
representations 6-month-old
4

Similar Publications

Neural representations for visual stimuli typically emerge with a bilateral distribution across occipitotemporal cortex (OTC)? Pediatric patients undergoing unilateral OTC resection offer an opportunity to evaluate whether representations for visual stimulus individuation can sufficiently develop in a single OTC. Here, we assessed the non-resected hemisphere of patients with pediatric resection within ( = 9) and outside ( = 12) OTC, as well as healthy controls' two hemispheres ( = 21). Using functional magnetic resonance imaging, we mapped category selectivity (CS), and representations for visual stimulus individuation (for faces, objects, and words) with repetition suppression (RS).

View Article and Find Full Text PDF

Animacy perception, the ability to discern living from non-living entities, is crucial for survival and social interaction, as it includes recognizing abstract concepts such as movement, purpose, and intentions. This process involves interpreting cues that may suggest the intentions or actions of others. It engages the temporal cortex (TC), particularly the superior temporal sulcus (STS) and the adjacent region of the inferior temporal cortex (ITC), as well as the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

Background: Wireless capsule endoscopy (WCE) has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology. However, the complexity of the digestive tract structure, and the diversity of lesion types, results in different sites and types of lesions distinctly appearing in the images, posing a challenge for the accurate identification of digestive tract diseases.

Aim: To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions, thereby improving the diagnostic efficiency of doctors, and creating significant clinical application value.

View Article and Find Full Text PDF

Injection molded parts are increasingly utilized across various industries due to their cost-effectiveness, lightweight nature, and durability. However, traditional defect detection methods for these parts often rely on manual visual inspection, which is inefficient, expensive, and prone to errors. To enhance the accuracy of defect detection in injection molded parts, a new method called MRB-YOLO, based on the YOLOv8 model, has been proposed.

View Article and Find Full Text PDF

The Anatomy of Context.

Hippocampus

January 2025

Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, USA.

For most of my career, I focused on understanding how and where spatial context, the place where things happen, is represented in the brain. My interest in this began in the early 1990's, during my postdoctoral training with David Amaral, when we defined the rodent homolog of the primate parahippocampal cortex, a region implicated in processing spatial and contextual information. We parceled out the caudal portion of the rat perirhinal cortex (PER) and called it the postrhinal cortex (POR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!