A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent Progress in Protein S-Nitrosylation in Phytohormone Signaling. | LitMetric

Recent Progress in Protein S-Nitrosylation in Phytohormone Signaling.

Plant Cell Physiol

College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China.

Published: March 2019

The free radical nitric oxide (NO) is a critical regulator in modulation of wide range of growth and developmental processes as well as environmental responses in plants. In most cases, NO interacts with plant hormones to regulate these processes. It is clear that NO might work through either transcriptional or post-translational level. The redox-based post-translational modification S-nitrosylation has been recognized as a NO-dependent regulatory mechanism in recent years. In general, S-nitrosylation can be understood as a product of reversible reaction where NO moiety group covalently attaches to thiol of cysteine residue resulting in the formation of S-nitrosothiol in target proteins. Recently, the crosstalk between S-nitrosylation and phytohormones has been emerging. Furthermore, several proteins involved in plant hormone signaling have been reported to undergo S-nitrosylation, which might subsequently mediate plant growth and defense response. In this review, we focus on the recent processes in protein S-nitrosylation in phytohormone signaling. In addition, both importance and challenges of future work on protein S-nitrosylation in plant hormone network are also highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcz012DOI Listing

Publication Analysis

Top Keywords

protein s-nitrosylation
12
s-nitrosylation phytohormone
8
phytohormone signaling
8
plant hormone
8
s-nitrosylation
7
progress protein
4
signaling free
4
free radical
4
radical nitric
4
nitric oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!