A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. | LitMetric

Chronic kidney disease (CKD) has been associated with changes in gut microbial ecology, or "dysbiosis," which may contribute to disease progression. Recent studies have focused on dietary approaches to favorably alter the composition of the gut microbial communities as a treatment method in CKD. Resistant starch (RS), a prebiotic that promotes proliferation of gut bacteria such as Bifidobacteria and Lactobacilli, increases the production of metabolites including short-chain fatty acids, which confer a number of health-promoting benefits. However, there is a lack of mechanistic insight into how these metabolites can positively influence renal health. Emerging evidence shows that microbiota-derived metabolites can regulate the incretin axis and mitigate inflammation via expansion of regulatory T cells. Studies from animal models and patients with CKD show that RS supplementation attenuates the concentrations of uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate. Here, we present the current state of knowledge linking the microbiome to CKD, we explore the efficacy of RS in animal models of CKD and in humans with the condition, and we discuss how RS supplementation could be a promising dietary approach for slowing CKD progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416045PMC
http://dx.doi.org/10.1093/advances/nmy068DOI Listing

Publication Analysis

Top Keywords

resistant starch
8
chronic kidney
8
gut microbial
8
animal models
8
ckd
6
modulation gut
4
gut microbiota
4
microbiota resistant
4
starch treatment
4
treatment chronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!