Robotic prostheses deliver greater function than passive prostheses, but we face the challenge of tuning a large number of control parameters in order to personalize the device for individual amputee users. This problem is not easily solved by traditional control designs or the latest robotic technology. Reinforcement learning (RL) is naturally appealing. The recent, unprecedented success of AlphaZero demonstrated RL as a feasible, large-scale problem solver. However, the prosthesis-tuning problem is associated with several unaddressed issues such as that it does not have a known and stable model, the continuous states and controls of the problem may result in a curse of dimensionality, and the human-prosthesis system is constantly subject to measurement noise, environmental change and human-body-caused variations. In this paper, we demonstrated the feasibility of direct heuristic dynamic programming, an approximate dynamic programming (ADP) approach, to automatically tune the 12 robotic knee prosthesis parameters to meet individual human users' needs. We tested the ADP-tuner on two subjects (one able-bodied subject and one amputee subject) walking at a fixed speed on a treadmill. The ADP-tuner learned to reach target gait kinematics in an average of 300 gait cycles or 10 min of walking. We observed improved ADP tuning performance when we transferred a previously learned ADP controller to a new learning session with the same subject. To the best of our knowledge, our approach to personalize robotic prostheses is the first implementation of online ADP learning control to a clinical problem involving human subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2019.2890974 | DOI Listing |
J Exp Anal Behav
March 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Istanbul, Turkey.
Robots are increasingly used alongside Skinner boxes to train animals in operant conditioning tasks. Similarly, animals are being employed in artificial intelligence research to train various algorithms. However, both types of experiments rely on unidirectional learning, where one partner-the animal or the robot-acts as the teacher and the other as the student.
View Article and Find Full Text PDFJ Hum Lact
March 2025
Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune, NJ, USA.
Maintaining Baby-Friendly Hospital Initiative (BFHI) standards within a complex healthcare system presents unique challenges. This case study from a regional perinatal center in the northeast United States details the design and implementation of a program to address BFHI Step 2, which requires ongoing competency assessment and team member training to ensure breastfeeding support. The shift of BFHI competencies to continuous professional development introduced logistical challenges, compounded by staff turnover and budget constraints.
View Article and Find Full Text PDFFront Artif Intell
February 2025
Department of Computer Science & Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
Machine learning techniques have emerged as a promising tool for efficient cache management, helping optimize cache performance and fortify against security threats. The range of machine learning is vast, from reinforcement learning-based cache replacement policies to Long Short-Term Memory (LSTM) models predicting content characteristics for caching decisions. Diverse techniques such as imitation learning, reinforcement learning, and neural networks are extensively useful in cache-based attack detection, dynamic cache management, and content caching in edge networks.
View Article and Find Full Text PDFInd Eng Chem Res
March 2025
Department of Chemical Engineering, Imperial College London, London, South Kensington SW7 2AZ, U.K.
This work proposes a control-informed reinforcement learning (CIRL) framework that integrates proportional-integral-derivative (PID) control components into the architecture of deep reinforcement learning (RL) policies, incorporating prior knowledge from control theory into the learning process. CIRL improves performance and robustness by combining the best of both worlds: the disturbance-rejection and set point-tracking capabilities of PID control and the nonlinear modeling capacity of deep RL. Simulation studies conducted on a continuously stirred tank reactor system demonstrate the improved performance of CIRL compared to both conventional model-free deep RL and static PID controllers.
View Article and Find Full Text PDFFront Chem
February 2025
College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
Introduction: Traditional methods for constructing synthetic nanobody libraries are labor-intensive and time-consuming. This study introduces a novel approach leveraging protein large language models (LLMs) to generate germline-specific nanobody sequences, enabling efficient library construction through statistical analysis.
Methods: We developed NanoAbLLaMA, a protein LLM based on LLaMA2, fine-tuned using low-rank adaptation (LoRA) on 120,000 curated nanobody sequences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!