This paper addresses the problem of robust bottom following control for a flight-style autonomous underwater vehicle (AUV) subject to system uncertainties, actuator dynamics, and input saturation. First, the actuator dynamics that is approximated by a first-order differential equation is inserted into the AUV dynamics model, which renders a high-order nonlinear dynamics analysis and design in the model-based backstepping controller by utilizing guidance errors. Second, to overcome the shaking control behavior resulted by the model-based high-order derivative calculation, a fuzzy approximator-based model-free controller is proposed, in order to online approximate the unknown part of the ideal backstepping architecture. In addition, the adaptive error estimation technology is resorted to compensate the system approximation error, ensuring that all the position and orientation errors of robust bottom following control tend to zero. Third, to further tackle the potential unstable control behavior from inherent saturation of control surfaces driven by rudders, an additional adaptive fuzzy compensator is introduced, in order to compensate control truncation between the unsaturated and saturation inputs. Subsequently, Lyapunov theory and Barbalat lemma are adopted to synthesize asymptotic stability of the entire bottom following control system. Finally, comparative numerical simulations with different controllers, environmental disturbances and initial states are provided to illustrate adaptability and robustness of the proposed bottom following controller for a flight-style AUV with saturated actuator dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2018.2890582 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.
View Article and Find Full Text PDFNano Lett
January 2025
Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou City 542899, China.
In nature, animals can realize multimodal movements such as walking, climbing, and jumping through transformation in locomotor gaits or form for survival, which is highly desired for untethered flexible actuators yet remains challenging. Here, we propose a robust self-healing multimodal actuator enabled by noncovalent assembled nanostructures with elaborate regulation of multistage responsive behaviors. Owing to the dynamic interfacial design between multiple components, the stimulus can be accurately delivered through a "light-heat-force release" pathway, endowing the actuator with diverse motion capabilities and desired jumping ability (27 cm, 34 times body length).
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America.
The administration of surfactant aerosol therapy to preterm infants receiving continuous positive airway pressure (CPAP) respiratory support is highly challenging due to small flow passages, relatively high ventilation flow rates, rapid breathing and small inhalation volumes. To overcome these challenges, the objective of this study was to implement a validated computational fluid dynamics (CFD) model and develop an overlay nasal prong interface design for use with CPAP respiratory support that enables high efficiency powder aerosol delivery to the lungs of preterm infants when needed (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!