Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methods for detecting the community structure in complex networks have mainly focused on network topology, neglecting the rich content information often associated with nodes. In the last few years, the compositional dimension contained in many real-world networks has been recognized fundamental to find network divisions which better reflect group organization. In this paper, we propose a multiobjective genetic framework which integrates the topological and compositional dimensions to uncover community structure in attributed networks. The approach allows to experiment different structural measures to search for densely connected communities, and similarity measures between attributes to obtain high intracommunity feature homogeneity. An efficient and efficacious post-processing local merge procedure enables the generation of high quality solutions, as confirmed by the experimental results on both synthetic and real-world networks, and the comparison with several state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2018.2889413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!