Background: Salt is important in the pathogenesis of hypertension (HT). Salt-sensitive hypertension (SSH) accounts for about half of all HT cases. In SSH, sodium/potassium adenosine triphosphatase (Na/K-ATPase) activity is impaired. Impaired Na/K-ATPase activity in the lens epithelium results in cortical opacities in the peripheral equator of the lens. We investigated the sensitivity of cortical lens opacities in detecting SSH.
Methods: The study included 191 SSH and 159 non-SSH, salt-resistant HT (SRH) patients (350 HT patients total), aged 40-80 years. One hundred twenty-four sex- and age-matched patients without a HT diagnosis made up the control group. Daily salt intake of all groups was calculated from 24-hr urinary Na excretion. SSH was diagnosed when the difference in mean arterial blood pressure values obtained during high- and low-Na diets was ≥10%. Non-SSH, SRH was diagnosed when the difference was <10%.Two researchers examined the presence of cortical lens opacities biomicroscopically using the diffuse, direct, Scheimpflug, and retroillumination from fundus methods.
Results: Total lens opacity was predictive of SSH among all cases (P < 0.001), with a sensitivity and specificity of 75.4% [95% confidence interval (CI): 68.6-81.3] and 83.6% (95% CI: 77.0-89.0), respectively. Its positive and negative predictive values were 84.7% (95% CI: 79.4-88.8) and 73.9% (95% CI: 68.6-78.5), respectively.
Conclusions: Lens opacities can be used as a finding that can be easily observed in the detection of SSH and excess salt intake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/met.2018.0117 | DOI Listing |
Homeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.
The persistent Na current (I) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of I requires long-lasting voltage steps (>1 s), which will increase intracellular Na and activate the Na/K-ATPase pump current (I). Thus, I may contribute to the previously measured slow inactivation of I and the generation of the inspiratory bursting rhythm.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.
(-)-Cryptanoside A () was identified previously as a major cytotoxic component of the stems of collected in Laos, which mediates its activity by targeting Na/K-ATPase (NKA), with hydrogen bonds formed between its 11- and 4'-hydroxy groups and NKA being observed in its docking profile. In a continuing investigation, and its 17-epimer, (-)-17--cryptanoside A (), and the new (+)-2-hydroxyandrosta-4,6-diene-3-one-17-carboxylic acid () and the known (+)-2,21-dihydroxypregna-4,6-diene-3,20-dione or 2-hydroxy-6,7-didehydrocortexone () pregnane-type steroids were isolated from . In addition, (-)-11,4'-di--acetylcryptanoside A () has been synthesized from the acetylation of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!