Unraveling the Critical Role of Site Occupancy of Lithium Codopants in LuSiO:Ce Single-Crystalline Scintillators.

ACS Appl Mater Interfaces

Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering , Beihang University, Beijing 100191 , China.

Published: February 2019

Lithium codoping has emerged as an effective strategy to enhance the light yield of oxide scintillators for radiation detection applications, but the understanding of the actual role played by Li remains unclear. In this work, we comprehensively study the effects of Li codoping on optical and scintillation properties of LuSiO:Ce (LSO:Ce) single crystals and reveal the critical role of site occupancy of Li. High-quality LSO:Ce single crystals codoped with 0.05, 0.1, and 0.3 at. % Li ions were grown by the Czochralski method. The optical absorption spectra confirm nonconversion of stable Ce to Ce in Li-codoped LSO:Ce regardless of the Li codoping concentration. The photoluminescence decay kinetics suggest an enhanced ionization of the excited 5d state of Ce centers in highly codoped samples. A simultaneous improvement of scintillation light yield, decay time, and afterglow is achieved in LSO:Ce codoped with low concentrations of Li. The preferential occupation of Li at interstitial spaces and lutetium sites is proven to rely on its codoping concentration by using the Li nuclear magnetic resonance technique. The concentration-dependent site occupancy of Li alters the defect structures of LSO:Ce, in particular resulting in a distinct change in the number of cerium spatially correlated oxygen vacancies confirmed by thermoluminescence and afterglow measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b19040DOI Listing

Publication Analysis

Top Keywords

site occupancy
12
critical role
8
role site
8
light yield
8
lsoce single
8
single crystals
8
codoping concentration
8
lsoce
5
unraveling critical
4
occupancy lithium
4

Similar Publications

Interspecific interactions are important drivers of population dynamics and species distribution. These relationships can increase niche partitioning between sympatric species, which can differentiate space and time use or modify their feeding strategies. Roe deer and red deer are two of the most widespread ungulate species in Europe and show spatial and dietary overlap.

View Article and Find Full Text PDF

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

Unlabelled: The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density.

View Article and Find Full Text PDF

The bile acid-sensitive ion channel (BASIC) is the least understood member of the mammalian epithelial Na channel/degenerin (ENaC/DEG) superfamily of ion channels, which are involved in a variety of physiological processes. While some members of this superfamily, including BASIC, are inhibited by extracellular Ca (Ca ), the molecular mechanism underlying Ca modulation remains unclear. Here, by determining the structure of human BASIC in the presence and absence of Ca using single particle cryo-electron microscopy (cryo-EM), we reveal Ca -dependent conformational changes in the transmembrane domain and β-linkers.

View Article and Find Full Text PDF

Nanozymes are next generation of enzyme mimics. Due to the lack of activity descriptors, most nanozymes were discovered through trial-and-error strategies or by accident. While eg occupancy in an octahedral crystal field was proven as an effective descriptor, the t2 in a tetrahedral crystal field has rarely been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!