The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence-structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.8b00990DOI Listing

Publication Analysis

Top Keywords

serine synthesis
8
phgdh homologues
8
ser3 ser33
8
human phgdh
8
human enzyme
8
yeast
5
phgdh
5
3-phosphoglycerate transhydrogenation
4
transhydrogenation dehydrogenation
4
dehydrogenation alleviates
4

Similar Publications

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

A bi-kinase module sensitizes and potentiates plant immune signaling.

Sci Adv

January 2025

Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.

Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.

View Article and Find Full Text PDF

Mitogen-activated protein kinase 1 (MAPK1) is a serine/threonine kinase that plays a crucial role in the MAP kinase signaling transduction pathway. This pathway plays a crucial role in various cellular processes, including cell proliferation, differentiation, adhesion, migration, and survival. Besides, many chemotherapeutic drugs targeting the MAPK pathway are used in clinical practice, and novel inhibitors of MAPK1 with improved specificity and efficacy are required.

View Article and Find Full Text PDF

Sestrin2 ameliorates age-related spontaneous benign prostatic hyperplasia via activation of AMPK/mTOR dependent autophagy.

Biogerontology

January 2025

Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.

Benign prostatic hyperplasia (BPH), characterized as a chronic disease with unregulated enlargement of prostatic gland, is commonly observed in elderly men leading to lower urinary tract dysfunction. Sestrin2 plays a role in the maintenance of cellular homeostasis and protects organisms from various stimuli. The exact role of Sestrin2 in the etiology of BPH, a common age-related disease, remains unknown.

View Article and Find Full Text PDF

Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!