Polymer nanodisks have shown great potential as membrane mimetics that enable the study of functional membrane protein structural biology and also have a wider application in other fields such as drug delivery. To achieve these research goals, the ability to have a cheap, simple, fully customizable platform for future nanodisks technology applications is paramount. Here, a facile functionalization of polyacrylic acid (PAA) with varying hydrophobic groups that form nanodisks at different sizes is successfully demonstrated. The study shows that the choice of hydrophobic group can have a noticeable effect on the polymer solubilization properties and polymer-induced perturbation to the encased lipid bilayer. Due to this robust, tunable chemical synthesis method, PAA is an exciting platform for the future optimization of the hydrophobic, hydrophilic, or direct purposed functionalizations for polymer nanodisks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433539 | PMC |
http://dx.doi.org/10.1002/smll.201804813 | DOI Listing |
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), 48018 Faenza, Italy.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this challenge, an effective drug delivery system is essential to protect and efficiently transport peptides to their intended targets.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).
View Article and Find Full Text PDFAdv Mater
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy.
Paper-based artworks are prone to natural aging processes driven by chemical and biological processes. Numerous treatments have been developed to mitigate deterioration and prevent irreversible damage. In this study, we investigated the use of poly(acrylic acid)/TiO composite hydrogels, combining their cleaning and protective functions in a minimally invasive treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!