Scope: The effects of green tea polyphenols, Polyphenon E (PPE), and black tea polyphenols, theaflavins (TFs), on gut microbiota and development of diabetes in db/db mice are investigated and compared.

Methods And Results: Supplementation of PPE (0.1%) in the diet of female db/db mice for 7 weeks decreases fasting blood glucose levels and mesenteric fat while increasing the serum level of insulin, possibly through protection against β-cell damage. However, TFs are less or not effective. Microbiome analysis through 16S rRNA gene sequencing shows that PPE and TFs treatments significantly alter the bacterial community structure in the cecum and colon, but not in the ileum. The key bacterial phylotypes responding to the treatments are then clustered into 11 co-abundance groups (CAGs). CAGs 6 and 7, significantly increased by PPE but not by TFs, are negatively associated with blood glucose levels. The operational taxonomic units in these CAGs are from two different phyla, Firmicutes and Bacteroidetes. CAG 10, decreased by PPE and TFs, is positively associated with blood glucose levels.

Conclusion: Gut microbiota respond to tea polyphenol treatments as CAGs instead of taxa. Some of the CAGs associated with the blood glucose lowering effect are enriched by PPE, but not TFs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494111PMC
http://dx.doi.org/10.1002/mnfr.201801064DOI Listing

Publication Analysis

Top Keywords

blood glucose
20
ppe tfs
16
tea polyphenols
12
db/db mice
12
associated blood
12
green tea
8
co-abundance groups
8
glucose lowering
8
gut microbiota
8
glucose levels
8

Similar Publications

The incidence of type 2 diabetes has risen globally, in parallel with the obesity epidemic and environments promoting a sedentary lifestyle and low-quality diet. There has been scrutiny of ultra-processed foods (UPFs) as a driver of type 2 diabetes, underscored by their increasing availability and intake worldwide, across countries of all incomes. This narrative review addresses the accumulated evidence from investigations of the trends in UPF consumption and the relationship with type 2 diabetes incidence.

View Article and Find Full Text PDF

The acute response to therapeutic afterload reduction differs between heart failure with preserved (HFpEF) versus reduced ejection fraction (HFrEF), with larger left ventricular (LV) stroke work augmentation in HFrEF compared to HFpEF. This may (partially) explain the neutral effect of HFrEF-medication in HFpEF. It is unclear whether such differences in hemodynamic response persist and/or differentially trigger reverse remodeling in case of long-term afterload reduction.

View Article and Find Full Text PDF

With the global rise in advanced maternal age (AMA) pregnancies, the risk of gestational diabetes mellitus (GDM) increases. However, few GDM prediction models are tailored for AMA women. This study aims to develop a practical risk prediction model for GDM in AMA women.

View Article and Find Full Text PDF

Purpose: The purpose of the study was to examine the extent to which adults with diabetes engage in self-management practices to lower their blood glucose levels and determine factors associated with these engagements.

Methods: The study analyzed data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES). The sample included 1171 adults ages 20 and older with a laboratory A1C level of 6.

View Article and Find Full Text PDF

Objectives: To study the clinical manifestations and genetic characteristics of children with maturity-onset diabetes of the young type 2 (MODY2), aiming to enhance the recognition of MODY2 in clinical practice.

Methods: A retrospective analysis was conducted on the clinical data of 13 children diagnosed with MODY2 at the Department of Pediatrics of Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology from August 2017 to July 2023.

Results: All 13 MODY2 children had a positive family history of diabetes and were found to have mild fasting hyperglycemia [(6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!