Background: Eosinophils are multifunctional granulocytes capable of releasing various cytokines, chemokines, and lipid mediators. We previously reported dysregulated fatty acid metabolism in peripheral blood-derived eosinophils from patients with severe asthma. However, functional characteristics of eosinophils present in allergic inflammatory tissues remain largely uncharacterized.

Methods: We established a method for isolating CD69 CCR3 CXCR4 siglec-8 eosinophils from nasal polyps of patients with eosinophilic rhinosinusitis (NP-EOS). Multi-omics analysis including lipidomics, proteomics, and transcriptomics was performed to analyze NP-EOS as compared to peripheral blood-derived eosinophils from healthy subjects (PB-EOS).

Results: Lipidomic analysis revealed impaired synthesis of prostaglandins and 15-lipoxygenase (15-LOX)-derived mediators, and selective upregulation of leukotriene D production. Furthermore, proteomics and transcriptomics revealed changes in the expression of specific enzymes (GGT5, DPEP2, and 15-LOX) responsible for dysregulated lipid metabolism. Ingenuity pathway analysis indicated the importance of type 2 cytokines and pattern recognition receptor pathways. Stimulation of PB-EOS with eosinophil activators IL-5, GM-CSF, and agonists of TLR2 and NOD2 mimicked the observed changes in lipid metabolism.

Conclusion: Inflammatory tissue-derived eosinophils possess a specific phenotype with dysregulated fatty acid metabolism that may be targeted therapeutically to control eosinophilic inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/all.13726DOI Listing

Publication Analysis

Top Keywords

dysregulated fatty
12
fatty acid
12
acid metabolism
12
eosinophils patients
8
peripheral blood-derived
8
blood-derived eosinophils
8
proteomics transcriptomics
8
eosinophils
7
dysregulated
4
metabolism
4

Similar Publications

Tumor Metabolism as a Factor Affecting Diversity in Cancer Cachexia.

Am J Physiol Cell Physiol

January 2025

Departments of Surgery and Oncology, University of Calgary Arnie Charbonneau Cancer Institute, University of Calgary.

Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes.

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

The Interplay Between Gut Microbiota, Adipose Tissue, and Migraine: A Narrative Review.

Nutrients

January 2025

Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy.

Background: Migraine, a prevalent neurovascular disorder, affects millions globally and is associated with significant morbidity. Emerging evidence suggests a crucial role of the gut microbiota and adipose tissue in the modulation of migraine pathophysiology, particularly through mechanisms involving neuroinflammation and metabolic regulation.

Material And Methods: A narrative review of the literature from 2000 to 2024 was conducted using the PubMed database.

View Article and Find Full Text PDF

Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!