Spinal muscular atrophy (SMA) is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene. Only ∼10% of the products of SMN2, a paralogue of SMN1, are functional full-length SMN (SMN-FL) proteins, whereas SMN2 primarily produces alternatively spliced transcripts lacking exon 7. Reduced SMN protein levels in SMA patients lead to progressive degeneration of spinal motor neurons (MNs). In this study, we report an advanced platform based on an SMN2 splicing-targeting approach for SMA drug screening and validation using an SMN2 splicing reporter cell line and an in vitro human SMA model through induced pluripotent stem cell (iPSC) technology. Through drug screening using a robust cell-based luciferase assay to quantitatively measure SMN2 splicing, the small-molecule candidate compound rigosertib was identified as an SMN2 splicing modulator that led to enhanced SMN protein expression. The therapeutic potential of the candidate compound was validated in MN progenitors differentiated from SMA patient-derived iPSCs (SMA iPSC-pMNs) as an in vitro human SMA model, which recapitulated the biochemical and molecular phenotypes of SMA, including lower levels of SMN-FL transcripts and protein, enhanced cell death, and reduced neurite length. The candidate compound exerted strong splicing correction activity for SMN2 and potently alleviated the disease-related phenotypes of SMA iPSC-pMNs by modulating various cellular and molecular abnormalities. Our combined screening platform representing a pMN model of human SMA provides an efficient and reliable drug screening system and is a promising resource for drug evaluation and the exploration of drug modes of action.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2018.0181DOI Listing

Publication Analysis

Top Keywords

smn2 splicing
16
vitro human
12
drug screening
12
human sma
12
candidate compound
12
sma
10
smn2
8
spinal muscular
8
muscular atrophy
8
smn protein
8

Similar Publications

Advances in Disease-Modifying Therapeutics for Chronic Neuromuscular Disorders.

Semin Respir Crit Care Med

December 2024

Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.

Article Synopsis
  • Neuromuscular disorders significantly impact respiratory function by affecting the muscles involved in breathing, leading to high rates of morbidity and mortality, but new therapies have emerged to help combat these issues.
  • Recent FDA-approved treatments for Myasthenia Gravis (MG) and Spinal Muscular Atrophy (SMA) show promising results; therapies targeting the complement system or enhancing SMN protein production improve respiratory function and overall clinical outcomes.
  • While advancements in treating Late-Onset Pompe Disease (LOPD) and Amyotrophic Lateral Sclerosis (ALS) have been made, the latter still presents challenges, with new drugs only managing to slow progression rather than halt it.
View Article and Find Full Text PDF

Background: Spinal muscular atrophy (SMA) patients benefit from pre-mRNA splicing modifiers targeting the SMN2 gene, which aims to increase functional SMN production. The animal toxicity affecting spermatogenesis associated with one such treatment raised questions about male SMA patients' spermatogenesis.

Methods: This descriptive, cross-sectional study was conducted from June 2022 to July 2023.

View Article and Find Full Text PDF

The availability of three therapies for the neuromuscular disease spinal muscular atrophy (SMA) highlights the need to match patients to the optimal treatment. Two of these treatments (nusinersen and risdiplam) target splicing of , but treatment outcomes vary from patient to patient. An incomplete understanding of the complex interactions among SMA genetics, SMN protein and mRNA levels, and gene-targeting treatments, limits our ability to explain this variability and identify optimal treatment strategies for individual patients.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disorder resulting in the loss of α-motor neurons. Nusinersen is an antisense oligonucleotide administered intrathecally to SMA patients that corrects the splicing defect of SMN2. Not all SMA patients respond equally to the therapy and work is in progress to identify biomarkers that may help stratify to SMA patients.

View Article and Find Full Text PDF

Efficacy and safety of gene therapy with onasemnogene abeparvovec in children with spinal muscular atrophy in the D-A-CH-region: a population-based observational study.

Lancet Reg Health Eur

December 2024

Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, Heidelberg 69120, Germany.

Background: Real-world data on gene addition therapy (GAT) with onasemnogene abeparvovec (OA), including all age groups and with or without symptoms of the disease before treatment are needed to provide families with evidence-based advice and realistic therapeutic goals. Aim of this study is therefore a population-based analysis of all patients with SMA treated with OA across Germany, Austria and Switzerland (D-A-CH).

Methods: This observational study included individuals with Spinal Muscular Atrophy (SMA) treated with OA in 29 specialized neuromuscular centers in the D-A-CH-region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!