Immobilization of Cr(VI) from solution by a graphene oxide-nZVI/biochar composite.

Water Environ Res

Department of Analytical Chemistry, School of Science, China Pharmaceutical University, Nanjing, China.

Published: July 2019

A graphene oxide (GO)-nanoscale zerovalent iron (nZVI)-biochar composite (GO-nZVI/BC) was synthesized prior to characterization by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy analyses. Batch experiments were performed at different initial Cr(VI) concentrations, contact times, and solution pH values. The effects of coexisting anions and chelating agents were also examined. The results indicated that the removal of Cr(VI) was highly pH-dependent and reached a maximum capacity at pH of 2. The equilibrium data were fitted well with the Langmuir isotherm model, and the kinetic data fitted better with the pseudo-second-order kinetic model. The increasing concentrations of EDTA in aqueous solutions were favorable to the removal of Cr(VI), while significantly inhibited adsorption. Furthermore, the GO-nZVI/BC maintained ~84.5% of its original capacity after aging in the air for 25 weeks. Based on the removal efficiency, GO-nZVI/BC can be considered to be an effective material for water treatment applications. PRACTITIONER POINTS: Biochar-supported graphene oxide-coated nanoscale zerovalent iron (GO-nZVI/BC) was synthesized and used to treat Cr(VI) from solution. Cr(VI) removal was pH-dependent and obeyed the Langmuir isotherm model and pseudo-second-order model. GO-nZVI/BC maintained ~84.5% of its original capacity after aging for 25 w in the air.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.1059DOI Listing

Publication Analysis

Top Keywords

crvi solution
8
zerovalent iron
8
go-nzvi/bc synthesized
8
removal crvi
8
data fitted
8
langmuir isotherm
8
isotherm model
8
go-nzvi/bc maintained
8
maintained ~845%
8
~845% original
8

Similar Publications

Cellulose/covalent organic framework aerogel for efficient removal of Cr(VI): Performance and mechanism study.

Int J Biol Macromol

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:

Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.

View Article and Find Full Text PDF

Nano-Fibrillated Bacterial Cellulose Nanofiber Surface Modification with EDTA for the Effective Removal of Heavy Metal Ions in Aqueous Solutions.

Materials (Basel)

January 2025

Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.

Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.

View Article and Find Full Text PDF

A novel adsorbent ZnAl-LDHs/SiO (ZA/SiO) was prepared by blending urea mixture of ZnSO and Al(SO) while using SiO as a support form. The adsorption properties of ZA/SiO for the removal of toxic metal ions (Cu(II) and Cr(VI)) from water were evaluated. By batch experiment method to investigate the ZA/SiO adsorption of Cu(II) and Cr(VI) solution treatment effect.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the zea mays plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!